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Abstract

Given a classical optimization problem Π with input
size n and an integer k ≥ 1, the goal is to generate
a collection of k maximally diverse solutions to Π.
For problems Π in P (such as spanning tree and
minimum cut), there are efficient poly(n, k) approx-
imation algorithms available for the diverse variants.
In contrast, only FPT algorithms are known for
NP-hard problems such as vertex covers and inde-
pendent sets, but in the worst case, these algorithms
run in time exp((kn)c) for some c > 0. In this work,
we address this gap and give f(k)poly(n) time ap-
proximation algorithms for diversification variants
of maximum weight independent sets and minimum
weight vertex covers in planar graphs.

1 Introduction
Computing a collection of diverse solutions to a given
optimization problem has gained a lot of attention
recently [1,2,5,9,11,14,16,19,20,25,26]. While clas-
sical algorithms are tailored to produce one solution,
the task here is to output a collection of k ≥ 1 solu-
tions that are maximally dispersed in the solution
space. In general, one is given a diversity measure
on the space of k-tuples of solutions to a problem,
and the goal is to output the set of k solutions that
maximize this measure.
When solutions can be represented as a subset of
the input, the metric for diversity measure is the
size of the symmetric difference between two sets:
d(X,Y ) = |X∆Y |, where X and Y are two feasible
solutions of a given optimization problem. This is
extended to a k-tuple of solutions by considering ei-
ther the average, or the minimum pairwise distance
between all pairs of solutions. For example, if F is
the family of all minimum spanning trees of a given
graph G, then the task is to find k spanning trees

∗A full version of this paper is available at https://arxiv.
org/abs/2501.12261
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whose average (or, minimum) of pairwise distances is
maximized. The weighted setting is also of interest,
e.g., F is the family of all minimum spanning trees
of G. However, if G has a unique minimum spanning
tree, then the problem of returning k diverse min-
imum spanning trees becomes uninteresting. The
natural approach here is to enlarge the set of so-
lutions by allowing approximations. We call such
approximately optimal solutions nice. In fact, if
we replace the minimum spanning tree above by
an NP-hard problem, say, maximum weight inde-
pendent set (MWIS), and we want polynomial time
algorithms, then allowing approximations becomes
necessary,7 as otherwise we cannot even solve the
problem for k = 1.
Thus, we consider the setting where we have a quality
function σ : F → R≥0 assigning a value to each
feasible solution, and a niceness factor c ∈ (0, 1). For
maximization (or, minimization) problems, we say
that a solution is c-optimal if its objective is at least
c ·maxS∈F σ(S) (or, at most (1/c) ·minS∈F σ(S)).
Now, we give the formal definition for diverse and
nice optimization as follows.

Definition 1 (Diverse and Nice Optimization). The
input is a four-tuple (I, k, σ, c), where I is a ground
set with n := |I|, k ≥ 1 is an integer, σ : 2I → R≥0

is a quality function, and c ∈ (0, 1) is a niceness
factor. Let Fc = {S ⊆ I : S is c-optimal}. The
diverse and nice optimization problem asks to find a
collection S = {S1, . . . , Sk} ⊆ Fc of size k so as to
maximize

∑
i<j |Si∆Sj |.

Remark. Note that, in order to exploit the quality-
diversity tradeoff, c is input by the user, unlike in
approximation algorithms where one would like c to
be as close to 1 as possible.
Despite considerable research, there are no poly-
nomial time algorithms, even with approximation
guarantees, known for obtaining diverse solutions
to any NP-hard optimization problem. All existing
results either give polynomial (in n and k) time ap-
proximations for problems in P, or FPT algorithms

7In fact, for any constant ε > 0 approximating maximum
independent set to within a factor of n1−ε for n-node graphs
remains NP-hard [29]. This is one of the reasons why in this
paper we focus on planar graphs.
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(that are exponential in n the worst case) for NP-
hard problems.
A natural class of NP-hard problems arise from
packing and covering. In this paper, we give the
first f(k)poly(n) time approximation algorithms for
MWIS and minimum weight vertex covers (MWVC)
in planar graphs.

Definition 2 (DMWIS-PG and DMWVC-PG). Let
G = (V,E) be a vertex-weighted planar graph, let
k ≥ 1 be an integer, and let Fc = {S ⊆ V :
S is independent and c-optimal}. The Diverse c-
Maximum Weight Independent Sets (DMWIS-PG)
problem asks to find a collection S = {S1, . . . , Sk} ⊆
Fc of size k (distinct whenever |Fc| ≥ k, other-
wise as a multiset) so as to maximize

∑
i<j |Si∆Sj |.

The Diverse c-Minimum Weight Vertex Covers
(DMWVC-PG) is defined analogously.

Related Work. Finding diverse MVCs has received
considerable attention with several FPT results.
This line of work focuses on c = 1, i.e., algorithms
that return optimal solutions and maximize the di-
versity exactly. While it is clear that such algorithms
cannot be polynomial in n and k for NP-complete
problems like MWISs in (planar) graphs [17], even
problems such as finding a diverse pair of maximum
matchings is hard [28]. Thus the work in this area
focuses on fixed-parameter-tractable algorithms that
avoid an exponential dependence on the input size
n; see, e.g., [2, 4, 5, 10–13,23,25,27].
The works on the Diverse Vertex Cover prob-
lem are the most relevant to us. The algorithm in [5]
runs in time 2kψnO(1) where ψ denotes the size of
each solution (e.g., the size of a minimum vertex
cover or a maximum independent set), and the al-
gorithm in [4] runs in time 2ωkψO(k)nO(1), where ω
represents the treewidth of the input graph. While
the 2kψnO(1) or 2ωkψO(k)nO(1) result is impressive
and important in the FPT context, in our setting
there is a limitation: planar graphs can have large
treewidth and large independent sets or vertex cov-
ers, i.e., ψ or ω could be nΩ(1). Even if k = 2, this
translates to a runtime of 2n

Ω(1)

, which could be
prohibitive8 for many applications.
Two related frameworks for diverse solutions to prob-
lems in P were presented in [16,18]. The first frame-
work [18] only allows to compute diverse solutions
in the space of optimal solutions (i.e., c cannot be
input by the user) but guarantees distinct solutions.
The second work [16] allows the user to specify a
value of c, but may return a multiset of k solutions

8 [22] shows that the size of a minimum dominating set
in a sensor network deployed on a 600m X 600m square goes
from 15 to 35 as the number of nodes increases from 100
to 1000 (Figure 5). Assuming a runtime of 2kψ where ψ
is the size of a dominating set, the computational task for
generating k = 4 solutions when each dominating set has a
size of 15 will take at least 5 years on a 5GHz computer.

instead of a set, i.e., may repeat solutions.9 Note
that not only do we want the best of both worlds (c
as input, and a set of k distinct solutions as output),
but, more importantly, we also want our framework
to apply to NP-hard problems.

2 Our Results
We begin with defining the notions of approximation
and resource augmentation.

Definition 3. An algorithm is a β-approximation
with α-resource augmentation for c-optimal
solutions (abbreviated as β-APX. with α-RA.)
for the diverse and nice optimization problem
if for every integer k ≥ 1 it computes k
many (αc)-optimal solutions S1, . . . , Sk such that∑

i<j |Si∆Sj | ≥ β
∑
i<j |S′

i∆S
′
j | for any c-optimal

solutions S′
1, . . . , S

′
k.

We remark that whenever one of α and β is equal
to one, we omit the qualifier from the statement.

Theorem 4. [DMWIS-PG and DMWVC-PG] For
DMWIS-PG, there exists a 2O(kδ−1ε−1)nO(ε−1)-time
(1 − ε)-APX. algorithm with (1 − δ)-RA. When
k = O(log n), this is a PTAS (Polynomial Time
Approximation Scheme). The same statement holds
for the DMWVC-PG.

Remark. 1. The running time does not depend
on c. It will turn out that the factor c will be
dominated by n1/ε. 2. The above result is the
first example of an approximation algorithm for the
diverse solutions version of any strongly NP-complete
problem that is fixed parameter tractable using only
k as a parameter. As mentioned, the dependence on
k allows us to obtain a PTAS up to k = O(log n).
This was not possible with existing work even for
k = 2 due to the exponential dependence on other
parameters such as the treewidth or the size of an
MWIS, as the focus was on exact algorithms (for
both diversity and quality). The tradeoff is that we
lose the small factors of ε in diversity and δ in the
quality.

Other Applications. Our framework extends to
other problems, including, Diverse Knapsack, Di-
verse Rectangle Packings, and Diverse TSP
problem. See the full version [15] for more details.

3 Our Algorithm
For brevity, we henceforth write A− a+ b := (A−
{a}) ∪ {b} for any set A.
One of main goals of our algorithm is to efficiently
implement the local search algorithm by Cevallos et

9A recent work [9] on finding diverse minimum s-t cuts
also guarantees a multiset of k diverse cuts.
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al. [7]. This local search algorithm starts with an
arbitrary set X = {x1, . . . , xk} of k elements in the
search space X , and then finds a pair of elements
xin ∈ X and xout ∈ X −X such that swapping these
two maximizes the diversity in X, i.e., (xin, xout) =
argmax(x′,x′′)

∑
xi,xj∈(X−x′+x′′) |xi∆xj |, where x′ ∈

X and x′′ ∈ X − X. This local search algorithm
is guaranteed to return a solution with diversity
at least max{ 1

2 ,
k−1
k+1} of optimal within O(k log k)

swaps. Note, however, that this algorithm might run
in time exp(n) if the search space is given implicitly
(e.g., spanning tree).
Hanaka et al. [18] showed a strategy to overcome
the aforementioned issue. Their approach is the fol-
lowing. Given S = {S1, . . . , Sk}, define an objective
function r(·) as r(e) =

∑
i∈[k](1(e ̸∈ Si)−1(e ∈ Si))

and r(S) =
∑
e∈S r(e). If (Sin, Sout) is the best

swapping pair, then Sout is the farthest point from
S − Sin, i.e.,

Sout = argmax
S∈F−S

∑

S′∈S−Sin

|Si∆Sj |, (1)

where F denotes the collection of all feasible solu-
tions. In other words, the diverse optimization prob-
lem can be approximated via maximization problem.
Therefore, with correctly designed farthest inser-
tion algorithm, by making at most k guesses for Sin
we may compute the best swapping pair (Sin, Sout).
Hence, by executing farthest insertion O(k2 log k)
times, we may compute a collection of solutions with
diversity at least max{ 1

2 ,
k−1
k+1} of optimal. Also,

note that solving maximization problem w.r.t r(·)
above might return a solution S that is already in
S. To circumvent this, they used the k-best enu-
meration w.r.t. r(·), where S′

1, S
′
2, . . . , S

′
k are said

to be the k-best enumeration if they are all distinct
and r(S′

1) ≥ r(S′
2) ≥ . . . ≥ r(S′

k) ≥ r(S′) for any
S′ ∈ S−{S1, . . . , Sk}. Once a guessed solution Sin is
kicked out, there are only k− 1 remaining solutions,
thus a distinct farthest solution from the remain-
ing ones is guaranteed. Hence, max{ 1

2 ,
k−1
k+1} factor

for diversity may be achieved by running k-best
enumeration O(k2 log k) times.
However, how do we run the k-best enumeration
w.r.t. r(·) in the space of c-optimal solutions Fc?
Moreover, if the underlying optimization problem
is already NP-complete, is it possible to design an
efficient algorithm for this task?

Baker’s Technique. Finding one maximum
independent set (MIS) in planar graphs is NP-
complete [17], and an influential work by Baker [3]
provided a PTAS for this problem.
A planar graph G = (V,E) can be embedded in the
plane and the layers of vertices can be computed
in linear time [21,24]. A vertex is said to in the 1st
layer if it is on the exterior face. In general, a vertex
on the exterior face after the first i− 1 layers have
been removed is in the ith layer.

Given an approximation factor (1 − γ), let ℓ =
(1/γ) − 1, and let p ∈ {0, . . . , ℓ}. The p-th strata
of G, denoted Lp, is the set of all vertices in G
that are at layers congruent to p modulo ℓ+ 1, i.e.,
the collection of every (ℓ + 1)-st layer from the p-
th layer; see Figure 1 for an illustration. A planar
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Figure 1: An Illustration of decomposition of G. Here,
G consists of 8 layers and ℓ = 2. The left one de-
notes a part of G, and the right one is a collection of
ℓ-outerplanar graphs constructed by removing the 3rd
strata from G.

graph is said to be ℓ-outerplanar if it has at most
ℓ layers. Baker’s technique proceeds in two steps.
First, Baker shows that there exists a MIS S′ and
a p ∈ {0, . . . , ℓ} such that removing the pth strata
from S′ results in an independent set S such that
|S| ≥ (1 − γ)|S′|. That is, ignoring the vertices
in the strata does not decrease the size of a MIS
by a factor more than (1− γ). Second, removal of
such a pth strata now decomposes G into a collec-
tion of several ℓ-outerplanar graphs G1, · · · , Gs, for
ℓ = (1/γ)− 1. Baker then provides a dynamic pro-
gramming based algorithm for independent sets in
ℓ-outerplanar graphs running in time O(23ℓn). The
final solution is the union of all the MISs for the
ℓ-outerplanar graphs G1, · · · , Gs, which by above is
at least (1− γ) of optimal.
Using our notation with c = 1 − γ, if we let
A(1−γ) denote Baker’s algorithm above, then the
solutions output by A(1−γ) belong in a smaller class
F ′

1−γ ⊆ F(1−γ) defined as F ′
1−γ := {S ⊆ V : ∃ p ∈

{0, . . . , ℓ} s.t. S∩Lp = ∅, and S is a MIS in G[V −
Lp]}, where G[A] denotes the graph induced by A
for some subset A ⊆ V . In other words, the space
of solutions is restricted in that the independent
sets returned by Baker’s algorithms will be missing
vertices from a certain strata. By ignoring a strata
we lose some c-optimal solutions from Fc. Thus any
generalization of Baker’s algorithm is likely to be
insufficient for solving DMWIS-PG over Fc.
Note that one could consider the following obvious
approach: Given G1, . . . , Gs as in Baker’s analysis,
find (approximately) diverse maximum independent
sets {Sji }kj=1 for every 1 ≤ i ≤ r and then combine
the k sets from every Gi to obtain k diverse indepen-
dent sets in G. This is not what our algorithm does,
for two reasons. First, it may that be in an opti-
mally diverse collection of MIS, the missing strata in
Baker’s analysis contributes more than an ε fraction
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to the total diversity. This would therefore be lost
in the above algorithm. Second, it is not clear that
an optimally diverse collection of k MISs in G, when
restricted to a particular Gi, give k MISs in Gi; i.e.,
the distribution of the optimal collection may be
very non-uniform across the Gis.
To overcome this issue, we boost Baker’s analysis
to show that there exists strata, called marginal
strata , such that removing it does not decrease
the size of any of the maximally-diverse c-optimal
solutions by too much, and the removed vertices do
not decrease the diversity of the c-optimal solutions
by too much.

Lemma 5. [Existence of Marginal Strata] Given
a planar graph G = (V,E), c, δ, ε ∈ (0, 1) and
an integer k ≥ 1, let ℓ ≥ 2kδ−1 + 2ε−1 −
1. Then, for any c-maximum independent sets
S1, . . . , Sk of V , there exists some p ∈ [0, ℓ] such
that the following conditions simultaneously hold:
(i) |Sh ∩ Lp| ≤ (δ/2)|Sh| for all h ∈ [k], and (ii)∑

i̸=j |(Si ∩ Lp)∆(Sj ∩ Lp)| ≤ ε
2

∑
i̸=j |Si∆Sj |.

Since every ℓ-outerplanar graph has a treewidth of
at most 3ℓ− 1 [6], using the algorithms in Lemma
7.4 and Theorem 7.18 of [8], any ℓ-outerplanar graph
can be transformed in time 2O(ℓ)n2 into a tree de-
composition with a treewidth of O(ℓ) and O(ℓn)
nodes such that each node has at most two chil-
dren10. Therefore, we assume hereafter that every
ℓ-outerplanar graph is given by its tree decomposi-
tion with treewidth O(ℓ) and O(ℓn) nodes, where
each node has at most two children.
We now formally define budget-constrained k-best
enumeration .

Definition 6 (Budget-Constrained k-Best Enumer-
ation). Let (I, k, σ, c) be an input to a diverse and
nice optimization problem, and let r : 2I → R be an
objective function. The Budget-Constrained k-Best
Enumeration problem (abbreviated k-BCBE, or sim-
ply BCBE) asks to find k distinct subsets, if they
exist, S1, . . . , Sk ⊆ I such that a) Si is c-optimal
w.r.t. σ for all i ∈ [k] and b) r(S1) ≥ r(S2) ≥ · · · ≥
r(Sk) ≥ r(S) for every S ⊆ I that is c-optimal. If
such subsets do not exist, the answer should be no.

Theorem 7 (k-BCBE in ℓ-outerplanar graphs). Let
G be an ℓ-outerplanar graph. Consider the budget-
constrained k-best c-maximum independent sets prob-
lem in G with objective function r : 2V → Z, where
r(S) ∈ [−R,R] for all S ⊆ V , and weight function
w. Then the k-BCBE problem can be solved in time
2O(ℓ)k2R2n.

Given any collection of k independent sets S =
{S1, . . . , Sk}, define an objective function r(·) as

10See the full version or [8] for the precise definition for a
tree decomposition of a graph.

earlier, i.e., r(e) =
∑
i∈[k](1(e ̸∈ Si) − 1(e ∈ Si))

and r(S) =
∑
e∈S r(e). Since each vertex can ap-

pear at most once in each of Si, it follows r(S) ∈
[−nk, nk]. Recall that max{ 1

2 ,
k−1
k+1} factor for di-

versity is achieved by running k-BCBE O(k2 log k)
times. Therefore, we have the following corollary.

Corollary 8 (max{ 1
2 ,

k−1
k+1}-apx. for c-Maximum

Independent Sets). Let G be an ℓ-outerplanar graph.
Then, there is an 2O(ℓ)k4n3-time algorithm that gen-
erates k c-maximum independent sets with diversity
at least max{ 1

2 ,
k−1
k+1} of optimal.

We are now in position to prove Theorem 4. We
prove here the unweighted version. For all other
missing details, see the full version.

Algorithm. Although we do not know in advance
which p ∈ {0, . . . , ℓ} yields the marginal strata, we
may check every p ∈ {0, . . . , ℓ} without affecting the
overall time bound. Hence, without loss of general-
ity, we assume that Lp denotes the marginal strata
guaranteed by Lemma 5.
First, we delete the marginal strata in Lemma 5 to
decompose G into G1, . . . , Gq, where G[V − Lp] =
G1 ∪ · · · ∪Gq and each Gi is ℓ outerplanar for the
value of ℓ in Lemma 5. Next, we create a tree decom-
position Ti of Gi for every 1 ≤ i ≤ q, and connect
all the roots of these q trees to a new common root.
This creates a tree whose root has q subtrees. Note
that this resulting tree has width O(ℓ) and O(ℓn)
nodes. We then transform this tree into a tree with
the same width and the number of total nodes, where
each none leaf node has at most two children.
When k < 4

ε , first run the Baker’s algorithm to find
a (1− δ

2 )-optimal independent set S̃. Then, using the
existing result by Baste et al. [4] that runs in time
2O(ℓk)nk, where ℓ is the treewidth and in our case
equals 2kδ−1 +2ε−1 from Lemma 5, find maximally
diverse independent sets each of which has size at
least (1− δ

2 )c|S̃|. Since the optimal diversity may be
at most nk2, we may find our guaranteed solutions
by running the algorithm of [4] at most O(nk2) times.
Thus, this process ends in time 2O(δ−1ε−1)nO(ε−1).
Note also that the size of each of obtained solutions
will be at least c(1 − δ) of the size of a maximum
independent set of G.
When k ≥ 4

ε , we apply the algorithm of Corollary 8
to G[V −Lp]. By Lemma 5 and Corollary 8, then the
diversity of the generated solutions will be at least(
k−1
k+1

)
(1 − ε

2 ) of optimal diversity of c-maximum

independent sets of G. Since k ≥ 4
ε ,

k−1
k+1 is no less

than (1− ε
2 ), and this give us the desired approxima-

tion factor. Also, ℓ = 2kδ−1 +2ε−1 +1, the running
time of this algorithm is 2O(kδ−1+ε−1)n3. This to-
gether with the running time for the case k ≤ 4

ε

gives the overall running time 2O(kδ−1ε−1)nO(ε−1).
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Visibility Optimization on Imprecise Terrains

Nathan Baker ∗ Bradley McCoy ∗ Binhai Zhu †

Abstract

The Earth’s surface is often modeled using triangulated terrains. How-
ever, geographic and engineering measurements are inherently imprecise.
An imprecise terrain is a triangulation in which each vertex has a fixed
planar location but its elevation is only known to lie within a specified
interval. In the 1.5D setting, an imprecise terrain is represented by an
x-monotone polyline with fixed x-coordinates and interval constraints on
the y-coordinates. In the 2.5D case, an imprecise terrain is a triangu-
lated surface with fixed x and y-coordinates, and intervals constraining
the z-coordinates. In this work, we study visibility problems on imprecise
terrains with n vertices. We present an O(n) time algorithm to compute
the minimum length realization of a 1.5D terrain that is fully visible from
a given imprecise interval. For imprecise 2.5D terrains with k viewpoints,
we show that finding a realization that minimizes the maximum area seen
by a viewpoint is strongly NP-hard. Finally, we give an O(n logn) time
algorithm to construct a realization of a 1.5D terrain that maximizes the
minimum height of a watchtower.

1 Introduction
Terrains are frequently studied in computational geometry, where applications
include avalanche prediction [23], hydrology [7, 8], and defense [10]. Terrain
data consists of measurements that will be uncertain due to noise, sampling
sparsity, and environmental variability. Small variations in elevation can change
visibility graphs, drainage basins, and optimal paths. In an imprecise terrain,
the elevation of each vertex is not given by a number and is instead known to
be in a vertical interval. In this model, we consider finding algorithms that
guarantee correctness over all realizations. We consider finding relations with
the best case (optimistic) and worst case (pessimistic) scenarios.

The investigation of imprecise terrains was initiated by Gray and Evans [12],
where it is shown that computing an optimistic shortest path on a 2.5D imprecise
terrain is NP-hard. Since then, there has been a growing interest in developing
algorithms on imprecise terrains [8, 13,14,20].

Visibility problems on precise terrains are well studied [1, 2, 4, 5, 17, 19, 25–
27, 29]. Applications of visibility on terrains include the construction of com-
munication towers [24], urban planning [6], and the placement of observers [9].
Visibility on imprecise terrains has received less attention. The optimistic short-
est watchtower problem was studied in 1.5 and 2.5D by McCoy and Zhu [21]. A
variation of the watchtower problem on an imprecise terrain where the top of the

∗James Madison University
†Montana State University
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(a) (b)

Figure 1: (a) Imprecision segments that make up a 1.5D terrain. (b) A possible
realization of the segments in (a).

watchtower is represented as a horizontal line segment was studied by McCoy,
Zhu, and Dutt [22]. Another variation, where the position of the viewpoint is
imprecise in the sense that it can be placed anywhere on a given edge, and the
objective is to maximize the visible region on a 1.5D terrain, was studied by
Keikha et al. [18].

2 Preliminaries
An imprecise 1.5D terrain is a 1.5D terrain with a closed y-interval at each x-
coordinate rather than a fixed y-coordinate. We denote the n vertical intervals
ℓ1, ℓ2, . . . , ℓn (Figure 1a). Let ti and bi denote the top of and bottom of ℓi,
respectively. A realization of an imprecise 1.5D terrain is a sequence of y-
coordinates, specifying a point on each of the n intervals (Figure 1b). We refer
to the points where a realization intersects the intervals as vertices and the
segments between vertices as edges. A vertex is left-turning when the polyline,
seen from left to right, turns to the left (upward), and right-turning if it turns
to the right (downward), and straight if it does not turn. For vertex v let x(v)
and y(v) denote the x and y−coordinates of v. Given an edge ei = (vi, vi+1) of
a terrain T , the edge extension of ei, denoted by E(ei), is the line obtained by
extending line segment ei.

In the imprecise 2.5D terrain model, we are given n precise x, y-coordinates
with an interval of z coordinates, and a triangulation defined when the vertices
are projected onto the xy plane. See Figure 2 for an example. A realization of
a 2.5D terrain is a choice of z-coordinate for each of the n intervals.

The shortest watchtower problem asks for the location and height of a ver-
tical line segment uv, where u is a point on a terrain T and each point p ∈ T is
visible to v.

3 Minimum length 1.5D visible realization
When guarding, there is often an operating cost for monitoring a portion of a
terrain. For example, sensors or cameras may have a fixed range. This motivates
the problem of finding realizations of minimum length or area. In this section,
we consider an imprecise 1.5D terrain T together with an interval ℓv containing
a viewpoint. We ask whether there exists a point v ∈ ℓv and a realization R
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Figure 2: A possible realization of a 2.5D imprecise terrain.

such that v sees all of R. If so, we give an O(n) time algorithm to compute a
minimum-length realization entirely visible from a point on ℓv.

Theorem 1. Given a 1.5D imprecise terrain with n intervals and an interval
ℓv, the minimum-length realization entirely visible from a point on ℓv can be
computed in O(n) time.

A complete proof is included in A.

4 2.5D Minimizing the Maximum Area
In this section, we consider the problem of guarding an imprecise 2.5D terrain
with multiple viewpoints. We show that it is strongly NP-hard to compute
a realization that minimizes the maximum area seen by any single viewpoint,
subject to the condition that every point of the terrain is visible from at least
one viewpoint.

Theorem 2. Given multiple viewpoints on an imprecise 2.5D terrain, com-
puting a realization that minimizes the maximum area visible to a viewpoint is
strongly NP-hard.

We reduce from the Partition problem with rational numbers, which is known
to be strongly NP-hard [11,28], and, thus, no pseudo-polynomial algorithm can
exist for solving this problem unless P=NP. In the Partition problem, we are
given a multiset S = {x1, x2, . . . , xn} of n positive rational numbers and must
decide whether S can be partitioned into two disjoint subsets S1 and S2 such
that ∑

x∈S1

x =
∑

x∈S2

x and S1 ∪ S2 = S.

Given an instance of the Partition problem, we construct an imprecise terrain
with two viewpoints such that a solution to the Partition instance exists if and
only if the maximum visibility area of the terrain is minimized. The proof is
included in B.
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(a) (b)

Figure 3: Realizations for an (a) optimistic and (b) pessimistic watchtower on
same 1.5D imprecise terrain. We can see that the edge extensions that determine
the minimum height of the tower shift with the terrain.

5 Pessimistic Watchtower
A linear-time algorithm has been given for the optimistic 1.5D imprecise watch-
tower problem [21]. In this section, we present an O(n log n) algorithm for the
1.5D pessimistic watchtower problem.

Theorem 3. The 1.5D pessimistic watchtower problem can be computed in
O(n log n) time.

A complete proof is given in C. The bottleneck in the runtime is to compute
the upper envelope of the 2n − 2 lines; all other steps are linear. Whether a
linear-time algorithm exists remains an interesting open problem.

6 Discussion
In this paper, we presented a linear-time algorithm for finding the minimum-
length realization of a 1.5D terrain visible from a fixed interval. We proved
that minimizing the maximum area visible from any single viewpoint on a
2.5D terrain with multiple viewpoints is strongly NP-hard. Finally, we gave
an O(n log n) algorithm for the pessimistic shortest 1.5D watchtower problem.

Several related questions remain open. First, the optimistic and pessimistic
imprecise 2.5D shortest watchtower problems are still unresolved. Second, in
1.5D, for a fixed viewpoint, optimizing the ratio of visible to invisible length
offers an interesting variant of the problem studied here. Third, in the multiple-
viewpoint setting of the 1.5D visibility problem, minimizing the maximum vis-
ible area remains an open challenge.
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A Appendix
In this appendix, we include omitted proofs.

Theorem 1. Given a 1.5D imprecise terrain with n intervals and an interval
ℓv, the minimum-length realization entirely visible from a point on ℓv can be
computed in O(n) time.

To begin, we compute a shortest-path realization π and determine whether
the point πv = π ∩ ℓv sees all of π in linear time [16, 20]. If πv sees all of π,
then π is the minimum-length realization visible from a point on ℓv. If πv does
not see all of π, we determine whether the minimum watchtower height of T
at ℓv is zero [21]. If the minimum watchtower height is nonzero, no realization
is entirely visible from a point on ℓv. Otherwise, if the minimum watchtower
height at ℓv is zero, then such a realization exists.

We next establish a lower bound on the y-coordinate of a viewpoint that sees
an entire realization. Let tl denote the vertex of π at the top of an interval with
minimum x-value, and let tr denote the vertex of π at the top of an interval
with maximum x-value less than the x-coordinate of ℓv. See Figure 4a for an
example. Let π′ be the subpath of π from tl to tr, together with its symmetric
subpath to the right of the viewpoint. Define

vm = max{ y(E(ei) ∩ ℓv) | ei ∈ π′ },

where E(ei) is the supporting line of edge ei, and let πm be the edge whose
extension, E(πe), determines to vm.

Lemma 1. For any optimal placement v′ ∈ ℓv, we have y(v′) ≥ y(vm).

Proof. We consider the subpath of π′ to the left of ℓv, the right side is symmetric.
Since the leftmost point of π′ is at the top of an interval, the edge πm has positive
slope (or is a subedge of a straight line of positive slope) and begins at the top
of an interval and ends at the bottom of an interval. Any realization of this edge
has slope at least that of πm, so the intersection E(πm) ∩ ℓv has y-coordinate
at least y(vm).
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(a) (b)

(c)

Figure 4: (a) The shortest path realization π in a terrain. The interval ℓv is in
bold. The tops of the intervals between tr and vm are convex and the bottoms
of the intervals between v1 and vl are concave. The entire terrain is not visible
from πv. (b) A point v ∈ ℓv from which the top of the second interval from the
left is not visible. (c) A minimum length realization visible to ℓv.

Let π̂ be the union of the shortest paths from vm to ℓ1 and ℓn. If v1, vn ∈ π̂
lie at the tops of their intervals, then by Lemma 1 we have found the shortest
realization visible from vm. Otherwise, π has no vertex at the top of an interval
with x < x(tl) and must be monotonically decreasing and concave down from
v1 to tl. An optimal solution balances raising the viewpoint and raising v1, vn
until the entire realization becomes visible from ℓv.

Theorem 1. Given a 1.5D imprecise terrain with n intervals and an interval
ℓv, the minimum-length realization entirely visible from a point on ℓv can be
computed in O(n) time.

Proof. Define a piecewise function f : ℓv → R such that for each v ∈ ℓv, f(v) is
the length of the shortest realization entirely visible from v, if such a realization
exists. By Lemma 1, we consider y(v) increasing from vm up to the top of ℓv.

The equation for the piecewise function f changes formulas at certain transi-
tion points. The first type of transition arises from intervals between x(ℓ1) and
x(tl). Let L be the concave decreasing portion of π̂ between x(ℓ1) and x(tl). If
the supporting line of two bottoms of intervals in L intersects ℓv above vm, then
this intersection defines a transition point of f(v). Thus, there is one transition
for each edge of the upper convex hull of the bottoms of the intervals between
ℓ1 and tl (see Figure 5a). Since L is decreasing and concave, these edges are the
edges of π̂ for x-values less than x(tl).

The second type of transition arises from intervals between x(tr) and x(ℓv).
If the supporting line of two tops of intervals in this range intersects ℓv above
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Figure 5: (a) A transition of f in between ℓ1 and tl. (b) A transition of f in
between tr and ℓv.

vm, then this intersection defines another transition point of f(v). Hence there
is one transition point for each edge of the lower convex hull of the tops of
the intervals between tr and ℓv (see Figure 5b). Since the intervals are already
sorted by x-coordinate, the convex hull can be computed in O(n) time [3]. Thus
we obtain O(n) transition points in total, which we denote by the set V .

For each v ∈ V , we test whether v can see all of L. If not, there exist
vertices bi, vi−1 ∈ L such that v sees bi but not bi−1. We then check whether
it is possible to raise the realization to the left of bi so that it becomes visible
from v. If any line vbi passes below the top of an interval to the left of bi,
then no realization is visible from v, and we move to the next point in V (see
Figure 4b). Otherwise, v sees all of L, and we compute the length of a straight
line from ℓ1 ∩ vbi union the shortest path from bi to v and store this value with
v. When we consider the tops and bottoms of the intervals from right to left and
all lengths are computed in O(n). This is a minimum length realization visible
to v because any shortest path from v1 to v contains tl and tr.

Between transition points, f(v) is convex because it is the sum of convex
functions. Moreover, at each transition point, the slope of f(v) increases, so
f(v) is strictly convex and has a unique minimum. By checking the transition
points and their neighboring intervals, we can find the overall minimum in O(n)
time.

B Appendix
We next include a proof of the following.

Theorem 2. Given multiple viewpoints on an imprecise 2.5D terrain, com-
puting a realization that minimizes the maximum area visible to a viewpoint is
strongly NP-hard.

We reduce from the Partition problem with rational numbers, which is known
to be strongly NP-hard [11,28]. In the Partition problem, we are given a multiset
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S = {x1, x2, . . . , xn} of n positive rational numbers and must decide whether S
can be partitioned into two disjoint subsets S1 and S2 such that

∑

x∈S1

x =
∑

x∈S2

x and S1 ∪ S2 = S.

Construction. Given an instance of the Partition problem, we construct an
imprecise terrain with two viewpoints such that a solution to the Partition
instance exists if and only if the maximum visibility area of the terrain is min-
imized. Without loss of generality, assume x1 is the largest element of S. We
construct a square of area x1 with two imprecise vertices on the x-axis and two
precise vertices on the y-axis. Two viewpoints, vl and vr, are placed on the
x-axis far to the left and right of the imprecise vertices, respectively.

We then add precise triangles above and below the quadrilateral on the y-
axis. We choose the z-coordinate large enough to prevent its viewshed from
interfering with those of other quadrilaterals. Next, we construct a quadrilat-
eral of area x2 above the square of area x1, again using two precise vertices on
the y-axis and two imprecise vertices off the axis. There is a unique y-coordinate
ensuring the quadrilateral has area x2 and is visible to both viewpoints. We con-
tinue this process, alternating above and below the base square. The quadrilat-
eral corresponding to xi is denoted qi. An overview of the terrain is illustrated
in Figure 6.

Figure 6: An overview of the imprecise terrain corresponding to the set
{4, 3, 2, 2, 1}. The large circles are the viewpoints and the squares indicate im-
precise points. The elements of S correspond to the area of the quadrilaterals.

The bottoms of the imprecise intervals are placed at rational height ϵb above
the xy plane so that each viewpoint looks upward. See Figure 7 for a side
view. The tops of the imprecise intervals are ϵt above the line formed by the
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viewpoint and bottom of the imprecise interval on the opposite side of the y-
axis. To enforce a partition structure, we add precise ‘backstops’ behind each
viewpoint so that if neither imprecise point of qi is at the top of an interval the
area visible to each viewpoint is not minimized (Figure 6).

Lemma 2. For each imprecise qi if neither of the imprecise points are at the
top of their intervals, then the viewpoints do not see the minimum possible area.

Proof. If neither imprecise interval of qi is maximized, the slope of the backstop
can be chosen so that each viewpoint sees over the other and an arbitrarily large
area is visible.

We next ensure that one of the imprecise points is near the bottom of its
interval. For each qi, consider the line formed by a viewpoint and the top of
imprecise interval on the opposite side of the y-axis. Let ϵd denote the the
z-coordinate where this line intersects the other imprecise interval (Figure 7).

Lemma 3. For each qi, if at least one imprecise vertex has z-coordinate greater
than ϵb + ϵd, then the terrain is not fully visible.

Proof. If the z-coordinate is greater than or equal to ϵb + ϵd, the terrain is
concave downward at the imprecise point and qi is not visible.

When the imprecise vertices are adjusted, the areas of incident triangles
change. Each imprecise vertex is incident to at most four triangles. By choosing
ϵb and ϵt sufficiently small, the change in the area of any such triangle is bounded
above by xmin

8n+1 , where xmin is the minimum positive rational number in S.

Figure 7: A side view of two imprecise intervals and their relation to the back-
stop.

Theorem 2. Given multiple viewpoints on an imprecise 2.5D terrain, com-
puting a realization that minimizes the maximum area visible to a viewpoint is
strongly NP-hard.

Proof. Given a Partition instance S, construct the imprecise terrain as de-
scribed. Compute the realization that minimizes the maximum visibility area.
For this terrain, let A(vℓ) and A(vr) denote the areas of the visibility maps of
vl and vr, respectively, computed using a polynomial time algorithm [16].

If there exists a valid partition of S, then the difference |A(vℓ) − A(vr)|
arises only from small distortions due to imprecise vertices. Each qi contributes

11



at most two imprecise vertices, each incident to at most four triangles, so the
total number of affected triangles is at most 8n. With our choice of ϵb, ϵt, the
total error is bounded by 8n · xmin

8n+1 < xmin. Hence,

|A(vl)−A(vr)| < xmin.

If no valid partition exists, then by Lemmas 2 and 3, each quadrilateral
has one imprecise vertex maximized and the other near its minimum. In this
case, the difference in areas seen by the two viewpoints is at least the minimum
imbalance among subset sums of S, which is strictly greater than xmin. Thus,

|A(vℓ)−A(vr)| > xmin.

Therefore, there is a partition if and only if |A(vl) − A(vr)| < xmin. The ter-
rain size is polynomial, visibility areas are computable in polynomial time, the
coordinates of the points of the terrain are rational, and hence minimizing the
maximum visibility area is strongly NP-hard.

C Appendix
Finally, we consider the pessimistic watchtower problem in 1.5D.

Theorem 3. The 1.5D pessimistic watchtower problem can be computed in
O(n log n) time.

There are two natural variations of the shortest watchtower problem on
terrains: the discrete version, where the base of the watchtower must be located
at a vertex, and the continuous version, where the base may also be placed
in the interior of an edge. We address both variations simultaneously. The
following lemmas characterize solutions to the pessimistic watchtower problem.

Lemma 4. The edges of the realization whose extensions determine the top of
the watchtower in a solution to the 1.5D imprecise pessimistic problem are as
steep as possible.

Proof. If the edges whose extensions determine the top of the watchtower are not
as steep as possible, making them steeper increases the height of the watchtower.
Notice that this is still true when the base of the watchtower is on the edge
adjacent to the edges whose extensions determine the top of the watchtower.
An example is shown in Figure 8.

Lemma 5. Let e = (vi, vi+1) denote an edge containing the base of a watchtower
in a solution to the 1.5D imprecise pessimistic problem. Then vi and vi+1 are
placed at the top or bottom of their respective intervals.
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Figure 8: If the top of a watchtower is determined by the extension of the edges
adjacent to the edge that contains the base, then the height of the watchtower is
maximized when the steepness of the extensions is maximized. Here, the dashed
watchtower is shorter than the solid watchtower.

Proof. If both extensions E(vi−1vi) and E(vi+1vi+2) determine the top of the
tower, by Lemma 4, the height of the watchtower is maximized by placing vi
and vi+1 at the top of their respective intervals.

Suppose that exactly one of the extensions E(vi−1vi) or E(vi+1vi+2) deter-
mine the top of the watchtower, without loss of generality say E(vi−1vi). By
Lemma 4, the height of the watchtower is maximized when vi−1vi is steepest,
which occurs when vi = ti, vi−1 = bi−1, and vi+1 = bi+1. If neither the exten-
sion vi−1vi nor vi+1vi+2 determine the top of the watchtower then the height is
maximized by vi = bi and vi+1 = bi+1.

We now present an O(n log n) time algorithm for the pessimistic 1.5D watch-
tower problem.

Theorem 3. The 1.5D pessimistic watchtower problem can be computed in
O(n log n) time.

Proof. Let T be an imprecise 1.5D terrain. Consider the set L of 2n − 2 lines
formed by the top to bottom edges, and bottom to top edges, of consecutive
intervals, explicitly

L = {E(b1t2), E(t1b2), E(t2b3), E(b2t3), . . . , E(tn−1bn), E(bn−1tn)}.

By Lemma 4, the edge extension(s) that determine the top of a watchtower
belong to L. The upper envelope of L, denoted En(L), can be computed in
O(n log n) time [15]. We can assume that an optimal solution includes a vertex
of En(L) or a vertex of T.

We consider the x-coordinates of the vertices of En(L) union those of the
x-coordinates terrain vertices, sorted in increasing order, we then sweep from
left-to-right. For each terrain vertex, we compute the vertical distance from
the bottom of the imprecise interval to En(L). For each u ∈ En(L), let vivi+1

denote the terrain edge directly below u. By Lemma 5, the base of the watch-
tower is in one of four configurations. We compute the vertical distance from u
to titi+1, tibi+1, biti+1, and bibi+1, and take the maximum.

As we sweep, we track the maximized minimum vertical distance between
En(L) and the terrain. The edge(s) of En(L) and the terrain edge realizing this

13



minimum distance determine the placement of the watchtower. Once identified,
we fix the corresponding edges while placing all other imprecise points at the
bottoms of their intervals. The following theorem confirms correctness.

The realization R described above is a solution to the 1.5D pessimistic watch-
tower problem. Let u be the point on E(L) and v be the point on R that are
found by the algorithm above, and let |uv| = h. Consider any other point on
R, v′. Suppose the distance from v′ to E(L), h′ is less than h. Then this con-
tradicts the choice of h, because the point u′ is on E(L) and v′ on an edge with
end points at the maximum or minimum of their imprecise intervals, and this
distance is considered by the algorithm.

Consider any other realization R′. By Lemma 4 and Lemma 5, the minimum
height watchtower is at most equal to the minimum height watchtower for R.
Thus, the realization R is a solution to the 1.5D pessimistic watchtower problem.
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Abstract

This paper introduces a novel k-cell decomposition
method for pursuit-evasion problems in polygonal en-
vironments, where a searcher is equipped with a k-
modem: a device capable of seeing through up to k
walls. The proposed decomposition ensures that as the
searcher moves within a cell, the structure of unseen
regions (shadows) remains unchanged, thereby prevent-
ing any geometric events between or on invisible re-
gions, that is, preventing the appearance, disappear-
ance, merge, or split of shadow regions. The method
extends existing work on 0- and 2-visibility by incorpo-
rating m-visibility polygons for all even 0 ≤ m ≤ k, con-
structing partition lines that enable robust environment
division. The correctness of the decomposition is proved
via three theorems. The decomposition enables reliable
path planning for intruder detection in simulated en-
vironments and opens new avenues for visibility-based
robotic surveillance. The difficulty in constructing the
cells of the decomposition consists in computing the k-
visibility polygon from each vertex and finding the in-
tersection points of the partition lines to create the cells.

1 Introduction

Pursuit Evasion [3] is a famous problem in computa-
tional geometry, especially for robotics and game the-
ory. Pursuit evasion involves one or more pursuers at-
tempting to locate or catch one or more evaders in some
environment. There are four main parameters which
describe pursuit evasion: the type of environment, the
number of pursuers and evaders, the speed of the pur-
suers and evaders, and the field of vision of the pursuers
and evaders. In Pursuit Evasion games, there is also al-
ways a strategy involved in how the pursuer attempts to
capture the evader and the evader tries to avoid capture.

The main difference between this paper and [2] is that
this paper generalizes the idea for 2-visibility cell decom-

position of the polygons to k-visibility with a proof of
correctness that extends the two proofs in [2]. It should
be noted that this generalization was not trivial. The
proof of correctness for vertex-shadow and edge-shadow
has been modified to work for k-visibility, with the proof
of edge-shadow being condensed. The rest of the paper
is organized as follows: Sec. 2 presents the background
material. Sec. 3 describes the method. Sec. 4 concludes
the paper.

2 Background

Consider a simple polygon P in 2D with some evaders
and a pursuer moving inside of it. The entire map is
known. The pursuers and evader have infinite speed.
The evader knows the pursuer’s location and all of its
movements. The pursuers and evaders move continu-
ously within the polygon. As the pursuer moves, parts
of the polygon might become invisible to it. Two points
p and q are said to be visible when the line segment pq
does not intersect the polygon. This is shown in Fig-
ure 1a. In particular, we are interested in k-visibility,
where two points p and q are said to be k-visible when
the segment pq intersects the polygon at most k times.
An example of this is shown in Figure 1b, where two
walls (k = 2) separate p and q.

Let p be the initial position of the pursuer, an arbi-
trary point within the polygon P . Each maximal con-
nected set of points within the polygon P that is in-
visible to p forms what is called a shadow of p. The
shadows of p are sub-polygons of P , denoted by Si(p).
As the pursuer (searcher) moves continuously in P , four
geometric events may occur for its shadow: merge, split,
appear, or disappear [6] (See Figure 2).

The challenge is to develop a cell decomposition such
that when a searcher moves within a cell, none of the
four events occur [5]. To calculate the k visibility poly-
gon, there are three algorithms available. Martins et
al. [4] presented a O(n2) algorithm. Bahoo et al. [1]
improved upon this with a O(nlog(n)) algorithm. An



even faster algorithm by Bahoo et al. [1] (for values of
k < log(n)) runs in O(kn).

p q

(a) 0-visibility

p q

(b) 2-visibility

Figure 1: Visibility between two points p and q

3 Proposed Method

First the cell decomposition is presented, and then a
proof of correctness is proposed. The proof consists of
three theorems.

3.1 The K-Cell Decomposition

The k-cell decomposition is created by computing all
even-valued visibility polygons, from 0-visibility to k-
visibility, at each vertex of P . We then use the lines
that define each polygon as the partition lines. In other
words, we calculate the following visibility polygons:

• Lines of the k-visibility polygon of each vertex.

• Lines of the k−2-visibility polygons of each vertex.

• Lines of the k− 4-visibility polygon of each vertex.
...

• Lines of the 0-visibility polygon of each vertex.

An example cell decomposition is presented in Fig-
ure 3 :

a

b

(a) Disappear

b

a

(b) Appear

b
a

S

(c) Merge

a
b

S1

S2

(d) Split

Figure 2: The four geometric events that may occur to
the pursuer’s shadow as the pursuer moves within the
polygon

a b

Figure 3: The cell decomposition with all decomposition
lines drawn from every vertex, for k = 2

The intuition behind this is that a vertex always par-
ticipates in an event, therefore considering all combina-
tions of vertices at all values of k gives an upper bound
solution.

3.2 Proof of Correctness of the K-Cell Decomposi-
tion

The proof consists of two theorems for two different
types of shadow, and one more theorem which summa-
rizes the two.

Definition 1 A type 1 shadow (vertex shadow) is de-
fined as a shadow that contains a vertex [2]. See Fig-
ure 4.

Definition 2 A type 2 shadow (edge shadow) is a
shadow that does not include a vertex [2]. This shadow
occurs only between edges. See Figure 5. Note that an
edge shadow cannot occur for the case of k = 0.

Definition 3 A partition line is a line of the cell de-
composition (which partitions the space into cells)

Definition 4 A vertex a that is critical to some point
b is a vertex with both of its edges to one side of the line
ab.

a

Figure 4: The shadow of type 1 - a shadow that includes
a vertex

Theorem 1 (Invariance of type 1 Shadow) When an
agent moves in a cell C, the combinatorial representa-
tion of the shadow regions of type 1 remains unchanged.

Proof. Consider a point p that is inside a cell C, a
point q that is also inside the cell C, and a vertex v of
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the polygon that is invisible to p, i.e., in the shadow
of p (shadow of type 1) (see Figure 6a). Assume for
contradiction that v is visible to q. When the pursuer
moves from p to q, the pursuer crosses a line of the cell
decomposition (See Figure 6b), so p and q are not in the
same cell. □

p

ee′

Figure 5: The shadow of type 2 (edge shadow) - a
shadow that occurs between two edges

p

q
v

(a) A point p and a
point q inside a cell
C, and a vertex of a
shadow of type 1

p

q
v

(b) A partition line be-
tween the vertex p and
vertex q

Figure 6: Figures for Theorem 1

Before proceeding to the second theorem, we first in-
troduce the necessary definitions and establish several
supporting lemmas.

Consider two points, p and q, located within the same
cell C of the decomposition, which denote the position
of an agent at two different times as it moves within
the polygon (See Figure 7). There are two edges of the
polygon e and e′, with e′ being the next wall after e on
the ray pp′. From the point p, there is a shadow of type 2
between these two edges. Two rays, pp′ and pp′′, define
this shadow (p′ and p′′ being points on e′). Consider
a ray emanating from q which rotates counterclockwise
around q. Consider the first time this ray hits both e
and e′. The intersection of this ray with e is q′. The
last time this ray intersects both e and e′ it intersects
e′ at q′′.

We assign a coordinate system in which the point p
is at the origin (0, 0) and the point q is on the y-axis.
Consider intersection points which further describe the
geometric layout: Let t be the point that is the inter-
section between the line qq′′ and pp′. Let s be the inter-
section between the line qq′′ and pp′′. This intersection
points help with definitions in the proof. There exists
a vertex, m, on the segment pp′ that is critical to p.
Call one of the edges of vertex m, the edge of m that
makes the smallest angle with the x-axis (as defined by
the coordinate system) em, as in Figure 8.

q

p

q′

q′′

p′

p′′
t

s

e
e′

Figure 7: The shadow of p. The intersection points t
and s with qq′′

q

p

q′

q′′

p′

p′′
t

s
m

em

e
e′

x

Figure 8: The existence of a vertex, m, on pp′ which
‘starts’ the shadow of p

Lemma 1 There exists a vertex, m, on the segment
pp′, with both edges lying below pp′. The vertex m is
critical to p.

Proof. Since the ray pp′ is responsible for forming a
part of the shadow of p, it means that somewhere along
this segment, there is a vertex which obstructs the vis-
ibility from the point p. This vertex has both of its
adjacent edges below segment pp′.

□

The next Lemma will be established through proof
by contradiction, as follows: we first consider that p has
a shadow of Type 2 between edges e and e′. Moreover,
for appear/disappear event, we suppose that the area
between edges e and e′ – the interior of the triangle
qq′q′′ that is between e and e′ – is visible to point q.

Lemma 2 If a k-modem that is in a cell C of the de-
composition and with a shadow of type 2 moves continu-
ously inside the cell, appear and disappear events of the
shadow regions of type 2 may not happen.

Proof. The proof is by contradiction. Assume, for
contradiction, that there is no vertex in △mpq or in
△mp′q′′ (See the two red triangles in Figure. 8) that is
critical to m and forms a partition line with m. This
means that as pp′ is rotated around m towards q, at
every vertex that is critical to m, including the other
vertex of em (that is not m, see Figure 10), there are
k or less walls on both the right and left sides of the
rotated line, regardless of which of the six cases we are
in (See Figure 9). Thus, there are always less than k
walls below pp′ (unrotated), so pp′ is not the boundary
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m
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(f) Case 6

Figure 9: The Six Cases for Theorem 2

memn

Figure 10: The other vertex of edge em, ‘n’

of the shadow of p, a contradiction. Note that case 3 is
a subcase of 1 and case 6 is a subcase of 4.

□

Lemma 3 The k-visibility polygon drawn from each
vertex ensures that no merge or split occurs when go-
ing from one cell to another.

Proof. If suddenly one shadow splits into two while
going from p to q, it means that there is a new critical
vertex c that has appeared to q which was not visible at
p. As such, the partition line created by the k-visibility
polygon of c must intersect the segment pq. So p and
q may not lie in the same cell of the decomposition, a
contradiction. □

This concludes our final theorem, which is as follows:

Theorem 2 The k-cell decomposition guaranties that
for a shadow of type 2 no geometric events (i.e., appear,
disappear, merge, and split) will occur while a pursuer
moves continuously in a cell.

Proof. This follows as a consequence of Lemmas 1, 2,
and 3. Note that there are only two possible shadows -
vertex shadow and edge shadow. □

Theorem 3 The proposed cell decomposition is com-
plete. In other words, while moving within a cell, no
geometric events may happen to the shadows.

Proof. This is proved by Theorem 1 and 2. □

3.3 Computational Complexity

The worst case complexity is when all vertices are crit-
ical for each other. As such, for a vertex v, there may
exist O(n) partition lines for each i in 0, 2, 4 . . . , k. So,
each vertex, there are O(nk) partition lines. Overall
there are n vertices. As such the total number of parti-
tion lines is O(kn2). For a particular vertex, each par-
tition line can intersect all the rest of the partition lines
except the one emanating from the same vertex. Con-
sequently, each partition line may intersect O(kn2−kn)
other partition lines. Each vertex has O(nk) partition
lines. So, all the partition lines emanating from a partic-
ular vertex intersect O(nk(kn2 − kn)). We have overall
n vertices. As such the number of intersections (vertices
of the cell decomposition) is O(k2n4).

3.4 Applications

The primary purpose of the cell decomposition is to
compute a path for one or multiple pursuers that guar-
antees detection of an intruder, and the same approach
presented by Guibas et al. [5] works on the cell de-
composition presented in this paper. We extend this
concept for k-modems by building this graph on the k-
cell decomposition. Using this, we propose an algorithm
that computes a path for detecting intruders in a given
polygon using a k-modem as the pursuer, if there exists
any.

4 Conclusion

This paper studied the pursuit-evasion problem under
the k-visibility model, generalizing existing work on
k = 0 and k = 2 visibility-based decompositions. The
focus of this research was to develop a cell decomposi-
tion that allows a pursuer equipped with a k-modem to
navigate within a polygonal environment to detect an
intruder. To do so, the environment is split into cells,
ensuring that the combinatorial representation of the
shadow regions remains unchanged as an agent moves
within a cell. This means that none of the key visibility
events, that is, merge, split, appear, or disappear occur
as the pursuer moves within a cell of the decomposi-
tion. Future work could include reducing the number
of lines in the decomposition or path planning between
two given points to avoid specific geometric event that
might occur along the path.

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).
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The Quota-TSP on Infinite Lines in the Plane With Obstacles

Joseph S. B. Mitchell∗ Linh Nguyen†

Abstract

The TSP on infinite lines in the plane is polynomially solvable [1, 3, 4]. It is open whether when

obstacles are present, the problem is polynomial or NP-hard. In this abstract, we show that the Quota-

TSP on infinite lines (visiting different lines yields different reward and the objective is to compute

the shortest route collecting at least some reward) with obstacles is weakly NP-hard and give a fully

polynomial-time approximation scheme.

1 Preliminaries

Given a set of m infinite lines l1, l2, . . . , lm in the Euclidean plane R2, each associated with a non-negative

reward r(li), a set of h polygonal obstacles O1, O2, . . . , Oh, and a quota Q, the objective is to compute a

shortest obstacle-avoiding route that intersects a subset of the lines whose total reward is at least Q. Let n

denote the total input size. We have n = O
(
m+

∑h
i=1 |vert(Oi)|

)
, where |vert(Oi)| is the number of vertices

of obstacle Oi. The Quota-TSP on infinite lines with obstacles asks for a shortest obstacle-avoiding

tour γ that collects reward at least Q.

2 Localization and discretization

Let γ be an optimal solution. Denote by L(γ) the set of lines intersected by γ. Note that the minimum

enclosing circle of γ also intersects all these lines (and possibly more). Within this circle, there exists a

locally minimum circle that intersects a set of lines whose total reward meets the quota.

By critical placement arguments, there are only a polynomial number of such critical circles (i.e., locally

minimum circles that intersect a given subset of lines). We can afford to compute each one and discard

those that intersect lines whose total reward does not meet the quota. Let C be one such critical circle that

intersects a sufficient-reward set of lines. Let r be its radius. We have r ≤ |γ| = O(nr) (proof omitted in

this abstract), and γ lies within localizing square B of side length O(nr) concentric with C.
We discretize the free space within B, i.e., the region B \⋃h

i=1 int(Oi). First, we triangulate this region.

Then, we overlay a regular square grid over B, with pixel side length δ = O
(
ε·r
n

)
. Each convex cell in the

resulting decomposition has perimeter at most 4δ. The total number of vertices in this decomposition is

O

((
n2

ε

)2
)
; let Sε denote this set of vertices. Since γ has at most O(n) vertices (proof omitted in this

abstract), for purposes of computing a (1 + ε)-approximation, it suffices to consider minimum-length tours

γ′ with vertices in Sε.
∗Department of Applied Mathematics and Statistics, Stony Brook University, joseph.mitchell@stonybrook.edu
†Department of Mathematics, Florida A&M University, linh.nguyen@famu.edu
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3 Inverting the objective function

Our algorithm is based on a key geometric observation: a connected set intersects a line if and only if its

convex hull intersects the line. This motivates the introduction of the intermediate Reward Collecting

Convex Polygon problem, for which we propose a dynamic programming algorithm to solve a discrete

version. We show how it can be used to approximately solve our Quota-TSPN variant.

In the Reward Collecting Convex Polygon problem, the goal is to compute n′ points p1, p2, . . . , pn′

in convex position, such that the total reward of the lines intersecting the convex polygon γ = (p1, p2, . . . , pn′)

is maximized, subject to a constraint that the geodesic perimeter |π(p1, p2)| + · · · + |π(pn′ , p1)| is at most

a given budget L (π(p1, p2) denotes the geodesic shortest path between p1 and p2). Since the polygon may

intersect obstacles, the perimeter is measured in the geodesic metric in the free space, not the Euclidean

metric.

Let γ′ be the optimal tour for the discrete Quota-TSP on infinite lines (i.e., we have a finite set of

points, in this case Sε, which vertices of γ′ come from), and let L = |γ′|. We claim that an optimal solution

to the discrete Reward Collecting Convex Polygon with budget L yields an optimal solution to the

discrete Quota-TSP. Let L(γ′) be the set of lines intersected by γ′, and consider the convex hull CH(γ′).
Since CH(γ′) intersects all the lines that γ′ does, we have r(L(CH(γ′))) = r(L(γ′)) ≥ Q. Moreover, CH(γ′)
is a convex polygon whose geodesic perimeter is no greater than L. Thus, we have shown that there exists

a convex polygon of (geodesic) perimeter at most L that collects reward at least Q, so the optimal solution

γ = (p1, p2, . . . , pn′) to the Reward Collecting Convex Polygon problem with budget L must also

collect total reward at least Q. Concatenating the geodesic paths π(p1, p2), . . . , π(pn′ , p1) into a tour γ̃, then

r(L(γ̃)) ≥ Q and |γ̃| ≤ L. Since no tour strictly shorter than L can satisfy the quota (by the optimality

of γ′), it follows that |γ̃| = L and γ̃ is also optimal. Similarly, one can show that an optimal Quota-TSP

route γ′ corresponds to an optimal reward collecting convex polygon, justifying using Sε as candidate turn

points for solving (approximately) the Reward Collecting Convex Polygon problem.

Generally, for any α ≥ 1, if we set L = α|γ′| and compute a solution γ to the discrete Reward

Collecting Convex Polygon problem with L as the budget, then γ is an α-approximation to γ′, and
therefore a (1 + ε)α-approximation to γ.

4 The main theorem

Theorem 4.1. The Quota-TSP on infinite lines with obstacles in R2 has a fully polynomial-time approx-

imation scheme.

Proof. We can “guess” L to be close (within a factor of (1 + ε)) to |γ′|. To do so, we divide the side length

of the localizing square B (which is O(n|γ|) and thus also O(n|γ′|)) into intervals of length εr, resulting in

O
(
n
ε

)
interval endpoints. The interval containing |γ| has a right endpoint that is within a factor (1 + ε) to

|γ|. Our algorithm performs a binary search over these endpoints: we find the first L for which a route of

length at most L satisfying the quota Q exists. This guarantees that |γ′| ≤ L ≤ (1 + ε)|γ′|.
For each value of L, we try all possible choices for the point with minimum y-coordinate in γ; call this

point p1. We then solve the discrete Reward Collecting Convex Polygon problem using dynamic

programming. First, we preprocess Sε by discarding all points with lower y-coordinate than p1, then sort

the remaining points in clockwise angular order around p1, breaking ties by increasing distance (i.e., farther

points come later). We also add a dummy point p ≡ p1 to close the polygon. Let {p1, s1, s2, . . . , p} be the

sorted list of candidate points. A convex chain consists of vertices appearing in increasing order in this list

(assuming clockwise orientation). Without loss of generality, we consider only the clockwise case.

2



Each subproblem in our dynamic programming is defined by two points si, sj ∈ Sε with i < j, and a

budget value L′. The value DP (si, sj , L
′) denotes the maximum reward collected by a convex polygonal

chain (a polygonal chain with vertices in convex position) from p1 to sj , ending with segment sisj , using

total length at most L′. Let L(ab) denote the set of lines intersecting the segment ab. The recursion works

as follows: for i′ < i, where si′ lies to the right (i.e., same side as p) of the supporting line of sisj (oriented

from si to sj),

DP (si, sj , L
′) = max

i′
{DP (si′ , si, L′ − |π(si, sj)|) + r(L(sisj) \ L(p1si))} .

See Figure 1. To maintain convexity in the chain associated with subproblem (si, sj , L
′), we recurse

only on subproblems where si′ lies to the right of sisj . Due to convexity, the lines newly intersected by

segment sisj are always exactly L(sisj) \ L(p1si) and do not depend on the specific chain used in previous

subproblems. Thus, the chain from p1 to sj of total length L′ collects the most reward for its length if and

only if the chain from p1 to si of length L
′ − |π(si, sj)| does the same: this is the optimal substructure of

our dynamic program.

The base cases DP (p1, s, |π(p1, s)|) for all candidate turn points s can be computed by brute force. The

overall optimum is given by max
s

{DP (s, p, L)}.
However, the values |π(si, sj)| may be irrational, making exact tabulation of subproblems infeasible. To

remedy this, we apply a standard “bucketing” technique: we discretize the budget into intervals, and round

each segment length |π(si, sj)| up to the nearest bucket boundary. Let the bucket width be I. Since γ has

at most n vertices, then the total extra length incurred due to rounding is at most nI. To ensure that this

does not increase the total length by more than εL, we set I = L

⌈n
ε ⌉ . Thus, we only need to consider the

following O
(⌈
n
ε

⌉)
multiples of I:

{
0,

L⌈
n
ε

⌉ , 2L⌈
n
ε

⌉ , . . . , L+
nL⌈
n
ε

⌉
}
.

The new recursion reads:

DP (si, sj , L
′) = max

i′

{
DP (si′ , si, L

′ − ⌈|π(si, sj)|⌉I) + r(L(sisj) \ L(p1si))
}
,

where ⌈x⌉I denotes rounding x up to the nearest multiple of I. The optimal solution for the rounded instance

is given by DP (p, L+ nI).

The running time of the algorithm is dominated by the dynamic programming. The number of subprob-

lems is O
(
n4

ε2

)
O
(
n4

ε2

)
O
(⌈
n
ε

⌉)
= O

(
n9

ε5

)
. It takes O

(
n4

ε2

)
time to solve each subproblem, and thus the

total running time is O
(
n13

ε7

)
. We obtain a tour of length at most (1 + ε)L ≤ (1 + ε)2|γ′| ≤ (1 + ε)3|γ| =

(1 +O(ε))|γ|.

We note that our approach works even if some obstacles are unbounded. If there is one infinite obstacle

enclosing all other obstacles, in essence the free space is a polygonal domain with holes.

4.1 Hardness Proof

Theorem 4.2. The Quota-TSP on infinite lines with obstacles is weakly NP-hard.

Proof. We reduce from theMin-Knapsack problem: given n items with weights {w1, w2, . . . , wn} and values

{v1, v2, . . . , vn}, and a target value V , select a subset of items with total value at least V and minimum total

weight.

3



Refer to Figure 2. Begin by drawing a circle of radius M = 1000 ·max{w1, w2, . . . , wn}. Draw a second

concentric circle of radius M +min{w1, w2, . . . , wn}; without loss of generality, suppose this minimum is w1.

From the center, draw n evenly spaced (radially) narrow corridors extending to the boundary of the bigger

circle. Each corridor corresponds to an item in the knapsack instance, and leads to an infinite line placed at

its end. Corridor i has length exactly M + wi.

If item i has weight greater than w1, its corridor includes a zigzag section to increase its length to exactly

M + wi while staying within a narrow cone (of angle much smaller than 2π
1000n ) centered along its radial

direction. The zigzag section is carefully constructed not to self-intersect and is shown exaggerated in the

figure for clarity.

Next, insert obstacles between every pair of adjacent corridors, leaving only a tiny clearance of width

ε <
max{|wi−wj |}

1000n2 . These obstacles are narrow, zigzagging (in congruence with the corridors), and extend far

outside the larger circle to ensure it is always suboptimal for the tour to go out of the outer circle.

At the end of each corridor i, place an infinite line tangent to the outer circle, corresponding to item i

and providing reward vi. The construction ensures that the only feasible way to collect reward from line i is

to travel through its associated corridor.

The resulting construction, which clearly can be done in polynomial time, has n infinite lines and obstacles

of total complexity O(n) (the ratio (M +wi)/(M +w1) is smaller than 2, so each corridor needs to contain

only one zigzag section, thus each obstacle has constant complexity). Any optimal route for quota V will

necessarily select the corridors corresponding to an optimal subset of items in the Inverse Knapsack

instance. Thus, solving this instance of Quota-TSP yields a solution to Inverse Knapsack, hence we

have shown (weak) NP-hardness.

Determining the exact hardness of all the variants of TSP on infinite lines with obstacles is an intriguing

open direction. One special case where we know of a solution is when the obstacles are the faces of the

arrangement formed by the n lines. In that setting, both the TSP and the k-TSP (computing the shortest

route visiting all or at least k lines) can be solved in polynomial time, specifically in O(n7) time [2].
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1 Introduction

The Art Gallery Problem (AGP) is a classic challenge of
ensuring every point in a polygon P is seen by at least
one guard [12,17,15]. We study a variation with two key
complexities: M -guarding, where each point must be seen
by at least M guards, and k-visibility, where a line of
sight can penetrate up to k polygon edges. The concept of
k-visibility originates from the “Superman Problem” [14]
and has since been adapted to AGP variants [1], with
efficient algorithms developed for computing k-visibility
regions [3,4]. The notion of M -guarding has also been
explored in 0-visibility [6]. However, the combination of
these two areas remains largely unexplored, with limited
related work in super-guarding [9,2]. We present a the-
orem establishing that any polygon with holes can be
2-guarded under k-visibility where k ≥ 2, which expands
existing results in 0-visibility. We provide an algorithm
that M -guards a polygon using a convex decomposition
of the polygon. We show that for any even k ≥ 2 there
exists a placement of guards such that every point in the
polygon is visible to k + 2 guards. Motivated by modern
applications of k-visibility in wireless communications and
mapping [18,11], this paper presents a formal algorithm
for M -guarding polygons using edge-restricted guards.

2 Definitions

This section introduces the key terms and concepts essen-
tial for understanding the problem of k-visibility guarding
in polygons with holes. We use some basic terms that are
well defined in the field of Computational Geometry, such
as polygon,edges reflex vertices, simple polygon, pocket and
holes. See [15,16] for formal definitions.

A diagonal is a line segment between two vertices that
lies entirely within P . For this paper, an obstacle is a
polygon edge. Two points are k-visible if the line segment
between them crosses at most k obstacles. A guard is a
point within a polygon that has the ability to “see” or
cover some points in the interior of the polygon. A k-
visibility guard can see through up to k obstacles. All
guards in this work are restricted to the interior side of
polygon edges.

3 Results

In this section, we state the contributions that this paper
will provide. As a reminder in this work, our goal is to
guarantee that each point in any polygon P can be seen
by at least M guards when k ≥ 2 and to establish a struc-
tured method for placing guards to ensure M -visibility.
To achieve this, we present an algorithm that uses an

optimal convex decomposition, and then assigns guards to
edges while keeping the required coverage. Optimal convex
decomposition refers to the division of a polygon P into
non-overlapping polygons such that each edge of the poly-
gon P is an edge of exactly one sub-polygon. In this paper,
they are divided using diagonals, and all pieces are convex.
A real edge refers to an edge of the original polygon. Also,
a dual graph refers to a graph where each node represents
a convex piece, and an edge exists between two nodes
if their corresponding convex pieces share an edge. We
begin by recognizing that for a given simple polygon P ,
an optimal convex decomposition can be constructed. [8]

3.1 Preliminary Results

Observation 1 A non-convex simple quadrilateral P has
at most one pocket.

Theorem 1. Every polygon with holes can be 2-guarded
under k-visibility for k ≥ 2.

Proof. Let P be a polygon, and suppose we are using
guards with k-visibility for some k ≥ 2. It is known that
any simple polygon (i.e., a polygon without holes) can be 2-
guarded under 0-visibility [6]. Since k-visibility generalizes
0-visibility, any 2-guarding solution for a simple polygon in
0-visibility also holds for k ≥ 2. Consider modifying P by
introducing a hole, creating a new polygon P ′. The original
2-guarding solution may no longer suffice under 0-visibility,
as the hole may obstruct visibility. To compensate, we
place guards on each edge of the hole. Let H denote this
set of guards, each of which has k-visibility with k ≥ 2.
Each guard in H can see through up to k ≥ 2 walls,

allowing them to view visibility to regions that became
hidden when the hole was introduced. For convex holes,
the guards on the hole’s boundary can collectively see
into the previously visible region multiple times, up to
|H| times. Non-convex holes introduce reflex vertices that
can create pockets. However, by placing a guard on each
edge of the hole, we ensure that every such reflex vertex
is adjacent to at least one guard. Because each guard can
see through at least two edges, the k-visibility condition
allows these guards to recover visibility to regions that
would otherwise remain hidden. Thus, the union of the
original 2-guarding solution and the guards placed on the
hole’s edges ensures that P ′ remains 2-guarded under k-
visibility. ⊓⊔
Lemma 1. Given a monotone simple polygon P and an
optimal convex decomposition of it, connecting 2 adjacent
convex pieces creates 1 obstacle composed of 2 edges for
any single ray of vision, which would be entirely visible in
2-visibility.



Proof. Adding each diagonal during the decomposition
can eliminate at most two reflex vertices, and reflex ver-
tices always form a pocket [7]. Therefore we may eliminate
one or two pockets. In the case where we have two pockets,
they do not overlap, and there is no singular ray of vi-
sion that is blocked twice when convex pieces are merged
[10]. Therefore, by doing the opposite process of merging
the polygon and removing diagonals that partition the
polygon, at each step, we do not invalidate the 2-visibility
guards by blocking the existing guards multiple times in
one move, as long as there was no guard on the removed
diagonal. ⊓⊔
To explain the Lemma 1 in simple terms, when we connect
2 pieces in the optimal convex decomposition, there should
be a pocket separating them, thus forming a concave
polygon. This concave polygon would be entirely visible
to any 2-visibility guard. This is the key to proving that
merging pairs of convex polygon, which we will do later,
maintains visibility enough that every point will be seen
by 4 different guards.
Now, consider when we remove a diagonal that partitions
the polygon, there may be a guard on that edge. We can
move that guard to be in a different convex piece. We
claim there exists a point another piece that can guard
the entirety of the first convex piece.

Lemma 2. Let A be a convex polygon. If a point g outside
of A sees the entire boundary ∂A, then g sees every point
in A.

Proof. Omitted for space, see Appendix A

Algorithm 1 Sweeping algorithm for critical vertices in
a pocket

Require: A reflex chain defined by vertices v1, v2, . . . , vn form-
ing a pocket, and an edge e on the boundary of region B
facing the pocket.

Ensure: A segment S ⊂ e such that every point in S sees the
entire boundary of the pocket under k-visibility.

1: Let vn be the vertex at the end of the reflex chain (where
the sweep begins).

2: Let v1 be the vertex at the start of the reflex chain.
3: Initialize an empty list C to store the critical vertices

encountered by the sweep.
4: Initialize a ray L originating at vn, rotating counterclock-

wise along the boundary of B.
5: for each reflex vertex ui in the chain from vn to v1 do
6: if the ray L encounters ui before intersecting any other

chain edge then
7: Append ui to the list C.
8: end if
9: end for
10: Let k be the number of critical vertices found in the pocket.

11: Let w be the ⌈k/2⌉-th vertex in C.
12: Let Lw be the ray from vn through w.
13: Let p be the intersection of Lw and edge e.
14: Let x be the reflex vertex at the endpoint of e.
15: Let S be the subsegment of e between p and x.
16: return S.

Fig. 1: The ray is cast from v1 along the reflex chain that
forms the pocket. Once we find the (k/2)-th critical reflex
vertex (orange ray), the sweep ends

Lemma 3. When the convex polygon B in the decompo-
sition is separated from another convex polygon A by a
diagonal d, there exists a non-empty set of points S on
the boundary ∂P such that each point in S sees the entire
boundary of A in 2-visibility.

Proof (Proof by Contradiction). Let d denote the diagonal
that separates A and B. Both A and B are convex. In
our first case, B is not interior. We consider the strong
k-visibility polygon of each edge of A. The intersection
of these visibility regions and B, is a set T of points in
B that, if it exists, sees the entire boundary A [5]. Since
both A and B are convex and share a diagonal d, a point
ϵ away from d in B can see all of A. We aim to show
that this intersection is non-empty and forms our desired
set S. Assume for contradiction that S is empty. That
is, for all points b ∈ B, the point b cannot see the entire
boundary of the convex polygon A. Now, consider a point
b ∈ B that is ϵ distance away from the diagonal d. Since
A is convex, any obstruction e preventing b from seeing
an edge of A must lie on the boundary of A, in B, or on
a third polygonal region C:
1. If e is part of A, then visibility is blocked by the bound-

ary of A, which is acceptable since the point b acts as
a 2-visibility guard, and therefore can see through this
edge.

2. e lies in B: If e is the edge that point b lies on, it can
see through this point by 2-visibility. If this is some
other edge, then B is no longer convex, and that is a
contradiction.

3. e lies in a third polygonal region C: In this case, e must
lie between b ∈ B and some portion of ∂A. But since
b is arbitrarily close to d, for e to block the view, it
must intersect the visibility cone from b to ∂A near
d. However, due to convexity of both A and B, and
the fact that b is infinitesimally close to d, such an
edge e must either intersect the interior of A, which
contradicts the assumption that regions are convex
and form a simple polygon, since the boundaries are
intersecting. (Fig. 2)

If e lies outside of both A and B, then e cannot block any
visibility from b ∈ B to A without intersecting A, again
contradicting the assumption that A is a valid convex
polygon. Hence, the only possible obstructions to b seeing



all of A are edges on ∂A. But since b is arbitrarily close
to d, and A is convex, there exists a view corridor from
b to any edge of A. Therefore, our assumption must be
false, and the set S is non-empty. Next, our second case
where we consider that B can be an interior polygon. If B
is an interior polygon, then instead of B, we consider the
convex piece C that has a real edge and shares a vertex
v with d. All intervening convex pieces between C and A
will be separated by diagonals originating from v. By the
same argument above, we can see that there will be no
edge e blocking the visibility of the guards in C from A
(other than the boundaries of C and A themselves), and
so, the set S is still non-empty as expected and our proof
is complete. ⊓⊔
Lemma 3 implies that we have all the points between ϵ
and the vertex to place the guard, and this region will
be determined by any reflex vertices that are within the
pocket. (Fig. 3)

Fig. 2: An invalid polygon with a hole. The vertex H
intersects the boundary of the outer polygon, violating
the requirement that holes must lie entirely within the
outer polygon

Fig. 3: A polygon that demonstrates the size of the valid
area for placing a guard in the adjacent piece.

Lemma 4. Let A and B be adjacent convex polygons in
a convex decomposition of a polygon, sharing an edge,
which is the diagonal d. Suppose a 0-visibility guard is
initially placed on d to guard A. Then this guard may be
repositioned to a point on a real edge that guards A and
B in 2-visibility.

Proof. By Lemma 3, there exists a non-empty set of points
S on the boundary of the polygon P , arbitrarily close to
d, such that each point in S sees the entire boundary of
A under 2-visibility. By Lemma 2, any such point that
sees all of ∂A also sees the entire interior of A. Thus,
a 2-visibility guard originally placed on the diagonal d
can be moved to a point in S without loss of coverage,

since there may only be 2 new edges blocking it. Since S
contains points that guard ∂A in 2-visibility, placing the
guard on one of these points maintains full 2-guarding of
A. ⊓⊔
We also claim that we do not adjust any single guard more
than once. Since we are traversing the dual graph, we will
be adjusting the guards forward into the next piece, or
the one after that, until we reach the final ear. In this
method, we will not backtrack, and thus we will not be
adjusting 2 guards to the same edge.

3.2 (k + 2)-guarding with k-visibility

Given a polygon P , we propose Algorithm 2 for (k + 2)-
guarding of P using k-visibility. Before we go into detail,
we provide a short overview.
We begin by decomposing the non-convex polygon P into
an optimal convex decomposition and constructing its
dual graph. Adjacent convex regions are then paired along
the dual graph wherever possible, leaving some regions
unpaired (such as ears or leaves) when pairing is not
feasible due to the structure of the dual. For each paired
set of adjacent convex pieces, a guard is placed on a real
edge or on the shared diagonal between them so that
both regions are visible under k-visibility. For isolated
convex regions, a guard is similarly placed on one of their
real edges. Around each vertex, a small area containing
only its two incident edges is considered. Within this
area, every point can see at least one of the adjacent
convex regions under k-visibility, ensuring local coverage
of the boundary without obstruction by other parts of
the polygon. Finally, each guard is relocated by a small ε
along the polygon boundary in the direction away from
the root of the dual tree. This guarantees that the guards
remain on real edges after merging adjacent convex pieces
and that the entire polygon remains fully covered under k-
visibility. See Fig. 4 for a visual example of the algorithm.
We have the following theorem:

Theorem 2. Given a polygon P (possibly with holes) and
a visibility parameter k, and let k = 2i for some integer
i ≥ 0, there exists a placement of guards on the edges of
P such that every point in P is (k + 2)-guarded under
k-visibility.

Proof. This can be accomplished following the steps of
Algorithm 2. The proof of the correctness of this algorithm
is as follows: We prove that every point in the polygon
is visible to at least (k + 2) guards by induction on the
convex pieces.
Base Case: n = 1. For a single convex polygon, place
one guard at the midpoint of each real edge of the ear.
Since the polygon is convex, every point in the polygon
is k-visible to each guard, and with at least k + 2 edges,
every point is seen by at least k + 2 guards.
Inductive Step: Assume that for some n ≥ 1, every point
in a polygon Pn with n convex pieces is (k + 2)-guarded.
We show this holds for a polygon with n+1 convex pieces.
Consider a polygon with n+ 1 convex pieces. Removing
one convex piece yields a polygon with n convex pieces,



where every point is (k+2)-guarded by assumption. When
we add a convex piece to a polygon, it is always an ear,
and therefore has 2 real edges as shown by the well-known
Two Ears Theorem [13]. For the new convex piece, if there
was a guard on edge that connects the (n+ 1)-th piece to
the polygon, place one guard on the real edge within the
intersection of the strong segment k-visibility polygons of
the n-th piece, and place the other guard anywhere on an
available free edge. Otherwise, we can place 2 guards onto
the available real edges. Merging the piece into Pn ensures
that every point remains (k + 2)-guarded, as long as we
have placed the guards within the visibility polygons of all
the segments of the adjacent piece, as proved in Lemma 1,
Lemma 3, and Lemma 4. It is also possible that there is
a piece inside the pocket that blocks the visibility when
we combine a non-monotone polygon with a convex piece
(Fig 3), So we check if the next piece is completely visible
to the segment. If it is not, then we need to use Lemma
3, and find the set of points S that will guard the X by
finding the critical vertices between the two pieces, X
and C, which can be accomplished with Algorithm 1. A
critical vertex is a reflex vertex whose adjacent edges lie
in the same half-plane. When the sweep passes such a
vertex, the visible region shrinks because the vertex acts
as a spike that obstructs part of the pocket. Consequently,
the feasible set S on the segment is determined by the
endpoint of the segment and these critical vertices. See
Figure 1 for a visual illustration. Therefore, every point
in the polygon with C + 1 convex pieces is visible to at
least four guards, and so by the principle of mathematical
induction, every point in a polygon with holes is visible
to at least four guards. By induction, every point in a
polygon with holes is (k + 2)-guarded. ⊓⊔
As a result of Algorithm 2 and Theorem 2, it follows
that there exists an upper bound on the number of guards
required to k+2-guard a concave polygon under k-visibility.

Observation 2 For any concave polygon P that is de-
composed into C convex pieces, at most kC guards are
sufficient to (k + 2)-guard P .
The decomposition used in our construction ensures that
each convex piece can be (k + 2)-guarded by at most k
guards placed on its boundary. Since the decomposition
yields C convex pieces, assigning at most k guards per
piece requires no more than kC guards. Usually, as k in-
creases, we can view more of the polygon, thus our number
of guards should decrease. However, in this problem, as
k increases, the maximum M -guarding possible increases
up to the number of vertices n.

4 Conclusion
In this work, we focused on addressing M -guarding under
k-visibility without attempting to minimize the number
of guards. Our approach allows for new strategies that
ensure multiple guards cover an area under k-visibility
via an efficient algorithm, and presents a bound for the
number of guards facilitating practical applications where
redundancy is more critical than minimizing number of
guards deployed.

Algorithm 2 (k+2)-Guarding a Polygon with k-visibility

Require: A non-convex polygon P and a parameter k.
Ensure: Guard set G that (k+2)-guards P under k-visibility.

1: Decompose P into optimal convex pieces.
2: Merge pieces to have ≥ k edges (except ears).
3: Construct the dual graph of the convex decomposition.
4: Let C0 be the leftmost convex ear in the decomposition.
5: Place one guard at the midpoint of each real edge of C0.
6: for each convex piece Ci along the dual graph path starting

from C0 do
7: Perform the sweep-line algorithm (Algorithm 1) to find

critical points in the pocket formed between Ci and the
next piece Ci+1.

8: if there are fewer than k/2 vertices in the pocket then
9: Place guards at the midpoints of real edges of Ci.
10: else
11: Place the guards in the set found by Algorithm 1.
12: end if
13: if guards cannot be placed on real edges because not

enough edges are available then
14: Place the guards on the diagonals.
15: end if
16: Merge Ci with the current merged region.
17: if a guard is placed on a diagonal that is removed during

merging then
18: Relocate the guard gf to a point on a real edge of the

adjacent region from which the entire boundary of the
previous convex piece Ci−1 is visible under k-visibility,
by computing the intersection of Ci−1 and the strong
k-visibility polygons of every edge in Ci.

19: if there are no real edges in the adjacent region then
20: Let e be the real edge connected to the vertex of

the diagonal d.
21: Let S be the set of points on e found using Al-

gorithm 1 with respect to the pocket and edge e.

22: Relocate the guard to a point in S.
23: end if
24: end if
25: end for
26: return The set of k-visibility guards that (k + 2)-guard

the entire polygon.

(a) An example of a poly-
gon after decomposition and
2-guarding

(b) An example of a polygon
with an additional piece.

Fig. 4: Panels (a) and (b) show different steps of Algorithm
2.
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A Proofs
Lemma 2. Let A be a convex polygon. If a point g outside of
A sees the entire boundary ∂A, then g sees every point in A.

Proof. Let g be a guard located outside the convex polygon A,
such that g sees the entire boundary ∂A. Let p be any point
in the interior of A. Since A is convex, any segment between
two boundary points lies entirely within A. Because g sees the
entire boundary, we can select two boundary points q1 and q2
visible to g such that the triangle △gq1q2 contains p. Since
gq1 and gq2 are unobstructed and q1, q2 ∈ ∂A, and since A is
convex, the triangle △gq1q2 intersects A only in its interior.
Therefore, the line segment gp lies entirely within △gq1q2 and
hence within the union of A and the guard’s view. So p is
visible to g. Hence, every point in A is visible to the guard g,
and the lemma holds. ⊓⊔
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Abstract
We consider NP-Hard problems when a particular or any single element of the input set is removed. These removal
options, referred to as one-removal and flex (any-removal), can change the hardness of the problem. We present new
complexity results on the one-removal and flex versions of a collection of NP-Hard set/graph theory and geometric
problems.

1 Introduction
Consider an NP-Hard decision problem P (S), where S
is a collection of objects. Define the flex version of P
as flex-P (S) =

∧
x∈S P (S \ {x}), asking if P always

holds given the removal of any element in an input set. For
example, flex-SUBSETSUM asks whether a set contains
a subset summing to a target value when any element is
removed. If P is NP-Hard then flex-P may be easy or hard;
in the case of some problems including flex-PARTITION
the hardness is unknown.

Suppose instead that we have an optimization prob-
lem P(S), where S is a collection of objects. Define the
one-removal version of P as or-P = P (S \ {x}) where
S, the solution for P (S), and x ∈ S are given.

By analyzing the hardness of the flex and one-removal
versions for NP-hard problems, we can classify the prob-
lems by flexibility.

Contribution. We prove that the flex versions of SUB-
SETSUM, HAMILTONIANCYCLE with vertex (edge) re-
moval, and TRIANGLEPACKING, the one-removal versions
of 2DBINPACKING and 2DSTRIPPACKING are NP-Hard,
and discuss open problems in flexibility analysis.

2 Background

2.1 Motivation
Robustness and fault tolerance are critical considerations
in system design. For example, interdependent critical
infrastructure systems (ICISs) such as electrical power
networks and water networks must be built to withstand
natural disasters [1, 2] . A city might like to guarantee that
power will still function if any individual unit is destroyed,
invoking the flex problem. Or, if the supplier must effi-

ciently recompute network dynamics after a component is
destroyed, reoptimization is invoked [3].

From a theoretical perspective, the flex and one-removal
problems tell us something about the underlying solution
space for various NP-Hard problems. We aim to classify
some problems by flexibility and point to other open prob-
lems as areas of future research.

2.2 Flex Problem

Our flex problem asks whether a set holds a specified prop-
erty when any of its elements are removed. This is consis-
tent with the literature on robustness of NP-Hard problems,
which asks how solutions to NP-hard problems change
under small perturbations of the input. Authors typically
focus on modifications involving small changes to input
values, such as one changed edge weight [4]. However,
resilience to element removal is not well-studied.

One exception is in graph theory, which has seen a num-
ber of results in property resilience to single edge or vertex
removal. For example, researchers have shown the exis-
tence of graphs that decrease in chromatic number when
any vertex is removed but keep their chromatic number
when any edge is removed [5]. Dirac famously proved that
complete graphs on n ≥ 3 vertices remain Hamiltonian
when up to ⌊n/2⌋ edges touching each vertex are removed
[6]. A similar result has been proven on directed graphs
[7]. On random graphs, the resilience can be bounded with
respect to a generic graph property using binomial distri-
butions and graph partitioning [8]. In this paper, we seek
to continue building towards a unified theory of resilience
by studying flex versions of various NP-hard problems.
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2.3 One-Removal Problem
Our one-removal problem asks whether given an instance
of an optimization problem and its solution we can easily
find optimal solutions when one element of the instance set
is removed. The fact that a problem is being solved with
complete knowledge of a nearby solution is consistent with
the literature around reoptimization, a term first coined by
Schäffter [9]. Interestingly, reoptimization problems are
often as hard as the original problems [10], implying that
the additional information of a nearby solution might not
be helpful. For example, past authors have demonstrated
the NP-hardness of reoptimizing TSP and metric TSP over
changes in individual edge weights [3], NP-hardness re-
sults have also been proven specifically on one-removal
problems, including reoptimizing Steiner Tree over vertex
removal [11], TSP over vertex removal [12], metric TSP
over vertex removal [13], and max k-colorable subgraph
over vertex removal [14]. Such research also frequently
focuses on improving approximation ratios by using local
information from the previous solution. This paper only
looks at hardness of an exact solution and leave approxi-
mation ratio improvements as future work. Our goal is to
expand this area of research to computational geometry by
studying the hardness of one-removal on two geometric
packing problems.

3 Flex Partition/SubsetSum
Here we consider three similar NP-Hard set theory prob-
lems. The flex version of the first can be solved in poly-
nomial time, the second is an open problem, and the third
will be shown to be NP-hard.

Definition 1 (EQUALCARDINALITYPARTITION (ECP)).
Given a set S, is it possible to partition S into two subsets
of equal sum and equal cardinality?

Definition 2 (PARTITION). Given a set S, is it possible to
partition S into two subsets of equal sum?

Definition 3 (SUBSETSUM). Given a set S and a target
T , does there exist a subset of S whose sum is T?

Theorem 1. [15] flex-ECP over the integers is solvable in
O(n) time.

Proof. It has been shown by King [15] in an unpublished
manuscript that if S is a list of integers, then flex-ECP(S)
is true if and only if all values in S are the same and |S| is
odd. This can be checked in O(n) time.

Whether flex-PARTITION is NP-hard is an open prob-
lem. The solution space to flex-PARTITION has some basic
structure, but its exact size and shape are unknown.

Theorem 2. flex-SUBSETSUM is NP-Complete.

Proof. flex-SUBSETSUM is verifiable in polynomial time
so flex-SUBSETSUM is in NP. Given an instance (S, T ) of
SUBSETSUM, consider flex-SUBSETSUM on (S∪{T}, T ).
Whenever an element of S which is not T is removed,
there will be a subset which sums to T , namely the sin-
gleton {T}. But when T is removed, we are left with
SUBSETSUM on S. Thus, SUBSETSUM(S, T ) = flex-
SUBSETSUM(S ∪ {T}, T ), completing the reduction.

4 Flex Hamiltonian Cycle
Definition 4 (HAMILTONIANCYCLE (HC)). Given a
graph G, does there exist a cycle which visits every vertex
once?

There are two options for what to remove from a graph
to create a flex version of HC: vertices and edges. We
define both versions below.

Definition 5 (flex-vertex-HAMILTONIANCYCLE
(FVHC)). Given a graph G, when any vertex p and its
incident edges are removed, does the new graph always
contain a Hamiltonian cycle?

Definition 6 (flex-edge-HAMILTONIANCYCLE (FEHC)).
Given a graph G, when any edge e is removed, does the
new graph always contain a Hamiltonian cycle?

Using either version, we will end up with a problem
that is as difficult as the original HAMILTONIANCYCLE
problem.

Theorem 3. FVHC is NP-Hard.

Proof. Let G represent an instance of the HC problem.
Add a new vertex t and connect it to every vertex inG. Call
this new graphG′, drawn below. We claim that FVHC(G′)
= HC(G).

If HC(G) = true, then G contains a Hamiltonian cycle
C. When t is removed, we are left with G, which has C as
a Hamiltonian cycle. When any other vertex p is removed,
we can replace p with t in C to get a Hamiltonian cycle,
since t is connected to every vertex. Thus, FVHC(G′) =
true.

If HC(G) = false, then when t is removed, we are
left with G, which contains no Hamiltonian cycle. Thus
FVHC(G′) = false.
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Theorem 4. FEHC is NP-Hard.

Proof. Let G be the input graph. Replace every edge e in
G with the following gadget, inserting three new vertices:

If HC(G) = true, then we can still find a Hamiltonian
circuit when any edge is removed since the gadget has
built-in redundancy, so FEHC(G) = true.

IF HC(G) = false, then there will be no Hamiltonian cir-
cuit in the modified graph even before any edge is removed,
since no new effective connections are made between any
of the original vertices, so FEHC(G) = false.

We can similarly define flex-vertex Hamiltonian-Path
and flex-edge Hamiltonian-Path, which we will denote as
FVHP and FEHP. Note that both FVHP and FEHP are also
NP-Hard; proofs are similar to Theorems 3 and 4. We can
explicitly explore the relationship between the Hamiltonian
Cycle and flex versions of Hamiltonian Path.

HC(G) =⇒ FEHP(G). If HC(G) is true, then G con-
tains a Hamiltonian cycle. Removing an edge which is part
of the cycle breaks the Hamiltonian cycle into a Hamilto-
nian path. Removing any other edge has no effect on the
cycle, so we can take any path contained in the cycle. Thus
FEHC(G) is true.

FEHP(G) ≠⇒ HC(G). Consider two cliques Kn and
Km with n,m ≥ 4 which share a node. When any edge is
removed, the graph will still contain a Hamiltonian path;
however, the entire graph does not contain a Hamiltonian
cycle.

HC(G) =⇒ FVHP(G). Removing any vertex breaks
the Hamiltonian Cycle in G into a Hamiltonian Path.

We conjecture that FVHP(G) =⇒ HC(G) for all graphs
with more than two nodes, but leave it as an open problem.
This would imply the equilavence of FVHP and HC.

5 Flex Geometric Packing
We review several NP-hard packing problems and show
that their flex versions are all NP-Hard. Packing means
placing shapes into a target region, allowing translation
and rotation, without overlap.

Definition 7 (PACKRIGHTTRIANGLESINTORECTANGLE
(PRTR) [16]). Given n right triangles and a rectangular
R, is it possible to pack the triangles into the R?

Definition 8 (2DBINPACKING (2BP)[17]). Given a bin
of fixed width W and height H , a cutoff T , and a list of n

rectangular items L = (a1, a2, . . . , an), where each item
ai has width wi and height hi such that 0 < wi ≤W and
0 < hi ≤ H , can the n items be packed into at most T
bins of dimension W × L?

Theorem 5. flex-PRTR and flex-2BP are NP-hard.

Proof. It is already known that PRTR and 2BP are NP-
Hard [16, 17]. For both problems, we reduce from the
non-flex version to the flex versions as follows. Given a
set of input shapes S, insert a new shape t such that t is
smaller than all the shapes in S.

If Packing(S) is true, then flex-Packing(S ∪ t) is true
since we can always place t in place of the missing shape.
If Packing(S) is false, then flex-Packing(S∪t) is false since
packing will fail when t is removed. Thus flex-Packing(S∪
t) = Packing(S), completing our reduction.

This technique of inserting a small shape to the input
set can be applied to show the hardness of flex versions of
other NP-Hard geometric problems, but not to all. We plan
to study more problems and develop new techniques.

6 One-Removal Geometric Packing
Definition 9 (2DSTRIPPACKING (2SP) [17]). Given a
strip of fixed width W and infinite height, and a list of n
rectangular items L = (a1, a2, . . . , an), where each item
ai has width wi and height hi such that 0 < wi ≤W , the
objective is allocate all the items to the strip and minimize
the total height used.

Recall the definition of one-removal: Given an optimiza-
tion problem P , a set S, the solution for P (S), and an
element x ∈ S, find P (S \ {x}). To prove that the one-
removal versions of or-2BP and or-2SP are NP-Hard we
will use the following lemma, adapted as a special case
from Böckenhauer et al. [10].

Lemma 1. Let P be an NP-Hard optimization problem
such that a deterministic algorithm can transform an effi-
ciently solvable input instance E into any input S using
a polynomial number of one-removal steps. Then or-P is
NP-hard.

Our contribution below is in constructing an efficiently
solvable instance E which can be transformed into S using
one-removals to satisfy the hypothesis of the lemma.

Theorem 6. or-2BP is NP-Hard.

Proof. Let (L,W,H) be a problem instance where L =
(a1, a2, . . . , an). Create an empty list L′. For each i, insert
three rectangles into L′, with dimensions wi × hi, (W −
wi)×H, and wi × (H − hi). This is efficiently solvable
as drawn below. If we remove each (W − wi) ×H and
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wi× (H −hi) rectangle one at a time from L′, we recover
the original instance L in 2n total steps. Thus, by Lemma
1 we have that or-2BP is NP-Hard.

Theorem 7. or-2SP is NP-Hard.

Proof. Let (L,W ) be a problem instance where L =
(a1, a2, . . . , an). Create an empty list L′. For each i, in-
sert two rectangles into L′, with dimensions wi × hi and
(W −wi)×hi. This is efficiently solvable as drawn below.
If we remove each wi × (H − hi) rectangle one at a time
from L′, we recover the original instance L in n total steps.
Thus, by Lemma 1 we have that OR-2SP is NP-Hard.

Theorems 6 and 7 can be extended to arbitrarily many
dimensions using induction.

Remark 1. While the added information of an optimal
solution for 2BP(S) or 2SP(S) does not help us find a
solution to the one-removal versions in polynomial time,
they do give us useful approximations. 2BP(S) approx-
imates 2BP(S \ x) within 1 and 2SP(S) approximates
2SP(S \ xi) within hi.

We conclude in stating that this article is a work in
progress towards a more unified theory of classifying NP-
Hard problems by flexibility.
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Enumerating Non-Crossing Hamiltonian Paths by Reachability

Checks and Bidirectional Search

Randal Tuggle∗ Jack Snoeyink†
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Abstract

Given a straight-line graph G embedded on a point set P ⊆ R2, we seek to enumerate all non-
crossing Hamiltonian paths through G. Standard backtracking algorithms extend a path from a
fixed endpoint and prune infeasible extensions by checking which vertices are immediately visible
from that endpoint, which can take Θ(|P |) per step. In place of visibility-based pruning, we in-
troduce reachability-based pruning, which checks whether all vertices are reachable from a given
end of the path under non-crossing constraints, at a per-step cost of O((|P | + |E(G)|) · α(|P |)),
where α is the inverse Ackermann function. Additionally, for both visibility and reachability-
based pruning, we introduce a bidirectional search, which extends the path from either end to
avoid early commitment to a fixed starting point. We define our reachability-based enumeration
methods using a reverse search framework [7], which allows systematic generation of all paths
using only polynomial space. We compare the search spaces for bidirectional and unidirectional
strategies and demonstrate the practical advantages of our methods. Furthermore, we experimen-
tally demonstrate that the stronger pruning power of reachability checks more than compensates
for their additional computational overhead.

1 Introduction

Enumeration problems have been extensively studied in not only graph theory [14, 17, 21] but also
computational geometry where enumeration problems often take as input a planar point set P (in-
ducing a complete geometric graph). These often ask to list or count non-crossing structures such as
Hamiltonian paths and cycles [1, 10, 23], spanning trees [8], and red-blue matchings [6], among many
other non-crossing structures [2, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 18, 19, 22]. Practical constraints often
restrict allowable edges, motivating enumeration problems where the input is a straight-line embedding
of a graph that is not necessarily complete [20].

In this paper, we explore enumerating non-crossing Hamiltonian paths through a straight-line graph
embedding G on points P in the plane. That is, we seek a permutation π of the points P that defines
a path with edges in the given graph that intersect only at shared endpoints. For the complete graph
on P , the fastest known approach for enumerating all non-crossing Hamiltonian paths was given by
Eppstein in 2023 [10]. He defines #HAM(P ) to be the number of non-crossing Hamiltonian paths
through the complete geometric graph with vertex set P , and #PATH(P ) to be the total number
of non-crossing paths (not necessarily Hamiltonian) through P . Eppstein’s approach enumerates all
non-crossing paths in O(|P | · #PATH(P )) time and O(|P |2) space by computing visibility polygons
to identify visible but unvisited points that the current path can extend to; these extended paths
become the path’s children in a backtracking search tree. By proving that #PATH(P ) is polynomially
bounded by #HAM(P ), he showed that this approach lists all non-crossing Hamiltonian paths in
|P | ·#HAM(P )O(1) time. However, convex point sets show that the exponent is at least log2 3 > 1.58,

since they have |P |
4 · (3|P |−1 + 3) non-crossing paths, but only |P | · 2|P |−3 non-crossing Hamiltonian

paths. Thus, if we want only the non-crossing Hamiltonian paths, then listing all non-crossing paths
may incur significant unnecessary overhead.

∗Department of Computer Science, UNC - Chapel Hill. E-mail: rtuggle@cs.edu
†Dept of Computer Science & SDSS, UNC - Chapel Hill. E-mail: snoeyink@cs.unc.edu
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Figure 1: Search tree sizes for four algorithms on a complete graph of 5 vertices in convex position:
unidirectional visibility (top with 206 nodes), bidirectional visibility (bottom left with 75 nodes, the
only algorithm avoiding double-counting of a path and its reverse), unidirectional reachability (bottom
middle with 116 nodes), and bidirectional reachability (bottom right with 105 nodes). For complete
graphs in convex position, reachability trees have O(|P | ·2|P |) nodes, while visibility trees have O(|P | ·
3|P |) nodes.

In place of Eppstein’s visibility-based approach, we use a reachability-based approach and examine
whether all vertices remain reachable under the non-crossing constraint before extending a partial
path. Although reachability checks incur more work per path (checking edges rather than only points
in O((|P | + |E(G)|) · α(|P |)) time), this is offset by pruning many non-crossing paths that cannot
be extended to a Hamiltonian path. In fact, for complete graphs in convex position, we reduce the
exponent to 1. To support reachability checks, we store additional information (Θ(|P |+ |E(G)|) space)
for the current path, from which we can explore the tree of non-crossing paths using the reverse search
technique of Avis and Fukuda [7].

For both approaches, we also introduce bidirectional search. By growing paths from both ends, our
bidirectional search avoids committing to a single start vertex, which can be problematic in sparser
graphs where many starting choices lead to dead ends, and it prunes the search tree more aggressively
by considering only non-crossing paths that contain the initially chosen point. To foreshadow the
experiments in Section 3, we provide Figure 1 to illustrate the relative size differences in the search
trees for each approach. A visualization of the search trees can be found at https://rtuggle99.github.io/.

2 Search Techniques

We assume a fixed graph G embedded with vertex set P ⊆ R2 and edges represented as line segments.
A path π = [p1, . . . , pℓ] consists of the directed edges E(π) = {−−→p1p2, . . . ,−−−−→pℓ−1pℓ}, directed from tail to
head. Path operations include reverse of π, namely πrev = [pℓ, . . . , p1], and adding to the tail or head:
To add point p to the path π = [p1, . . . , pℓ] at the tail we use p ◦t π = [p, p1, . . . , pℓ] or at the head we
use p ◦h π = [p1, . . . , pℓ, p]. When π is empty, p ◦t π = p ◦h π = [p]. We’ll use notation dir ∈ {h, t} to
denote directional operations, predicates, or variables (e.g., ◦dir, etc.). Given a non-empty path π, we
define π\dir to be the subpath of π obtained by removing the point at the dir-end of π.

2.1 Visibility-based Searches

For the unidirectional visibility search, we follow the method of Eppstein [10] to define a tree such
that the nodes are non-crossing paths. The root is the empty path. The parent of a non-empty path
π is π\h. For each node π and vertex u not already in π, we have that u ◦h π is a child of π if u ◦h π is
non-crossing. For the bidirectional search, we select a pivot point p and considers only non-crossing
paths containing p. Starting from the single-point path [p], the search extends the path from either
end. In undirected graphs, every path corresponds to two permutations: π and its reverse πrev. To
avoid having to explore branches from both a path and its reverse in undirected graphs, we define a
canonical form of a path as follows:

Definition 1. The canonical form of a path π in an undirected graph is the orientation (either π or
πrev) where the head has a higher index than the tail.

2



...
...

...
...

...
...

...
...

...

...
...

...
...

Figure 2: Unidirectional visibility search tree (left) and bidirectional visibility search tree (right) when
G is the complete graph of 5 vertices in convex position.

If we define the children for a bidirectional search naively, a given path may have multiple parents.
For example, if p is the pivot, the path [a, p, c] can be reached by first adding a to the tail and then c
to the head, or by adding c to the head and then a to the tail. To ensure no node has multiple parents,
we define the search tree as follows: Nodes correspond to non-crossing paths (in canonical form if G is
undirected) containing a pre-chosen pivot (by convention, we choose the vertex in G with the smallest
degree to be the pivot). The root is the one-element path consisting of the pivot. For all other nodes
π, the parent of π is (the canonical form of) π\h if π\h contains the pivot and (the canonical form of)
π\t otherwise.

2.2 Reachability-based Searches

p1
p2

p3

p4

q1

q2

q3

q4 q5

Figure 3: Suppose G is the complete graph
on 15 vertices, embedded as shown. The blue
path π partitions the remaining vertices of
G into two components, {p1, p2, p3, p4} and
{q1, q2, q3, q4, q5}. The head-end of π can reach
either component, whereas the tail-end can
reach only {p1, p2, p3, p4}.

In Figure 3, if we are restricted to extending only the
head-end of π, then, since π splits the remaining ver-
tices into several connected components (one gener-
ated by {q1, q2} and another by {p2}), we can disre-
gard π as a valid path to extend since no non-crossing
Hamiltonian path can contain π as a prefix. If, how-
ever, we are allowed to extend from both the head-
and tail-end of π, the question becomes whether a
non-crossing Hamiltonian path can contain π as a sub-
path. In this case, the head-end must extend through
the component generated by the points {q1, q2} im-
mediately visible from the head-end, while the tail-
end must extend through the component generated
by the points {p1, p2, p3, p4} immediately visible from
the tail-end. The full version of this paper formalizes
the idea of partitioning the vertices into sets accord-
ing to the components they can reach and includes
an O((|P | + |E(G)|) · α(|P |)) test based on this idea
to determine whether π partitions the vertices appro-
priately with respect to which ends of the path are
available for extension. We only allow a path to be a
node in the reachability-based search trees if it passes that reachability check.

We define trees similar to before, except, for this bidirectional search, we don’t use a canonical form
of a path. For the bidirectional search, same as before, we extend the tail for some period of time, and
then we allow only the head to extend. To enable reverse search, we define a single, consistent rule for
ordering the children of any nonempty path π: Give precedence to extensions that grow the tail-end
of the current path π, and break ties using the radial ordering of the newly added point around the
dir-end of π. (If the path π is empty, as is the case for the root of a unidirectional search, we can
order its children by increasing x-coordinates, breaking ties with y).
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Figure 4: Unidirectional reachability search tree (left) and bidirectional reachability search tree (right)
when G is the complete graph of 5 vertices in convex position.

3 Experiments

In this section, we explore the effectiveness of reachability pruning on both directed and undirected
graphs. We select n vertices uniformly in the unit square, create the left-to-right Hamilton path, then
add all other edges with probability θ. In the four approaches each search tree node is a non-crossing
path; we estimate the fraction of leaves that are non-crossing Hamiltonian paths.

For each triple ((un)directed , θ, n), we generate an embedding. Within each of the four search trees,
we sample leaves with replacement by tracing randomly from the root 10,000 times. Trace i uses node
degrees to record the probability pi of reaching its leaf and the 0/1-indicator with Hi = 1 iff that leaf
was Hamiltonian. We estimate the overall fraction of Hamiltonian leaves with the Horvitz–Thompson
ratio: f̂ = (

∑
iHi/pi)/(

∑
i 1/pi).

Figure 5 has plots for undirected and directed graphs with several edge probabilities. Each plot
shows four lines for the four search trees, with the number of vertices n on the x-axis and the fraction
of Hamiltonian leaves on a log scale on the y-axis. The visibility approach has a hard time finding
Hamiltonian paths; after n = 10, it couldn’t find any Hamiltonian leaves within the 10,000 traces. In
contrast, reachability pruning is quite effective at keeping the non-Hamiltonian leaves within a rela-
tively small multiple of the Hamiltonian paths. We also note that in sparser graphs, the bidirectional
approaches consistently outperform the unidirectional approaches.

Figure 5: For a given number of vertices n ∈ {3, 5, 7, 10, 15, 20, 30, 50} and edge probability θ ∈
{0.25, 0.75, 1.0} we generate a random directed or undirected graph. For each of the four search
approaches nodes represent non-crossing paths; we plot, on a logarithmic y-axis, the fraction of leaves
that are Hamiltonian paths.
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Points with Objects in the Plane
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Abstract

The (unweighted) point-separation problem asks, given a pair of points s and t in the
plane, and a set of candidate geometric objects, for the minimum-size subset of objects whose
union blocks all paths from s to t. Recent work has shown that the point-separation problem
can be characterized as a type of shortest-path problem in a geometric intersection graph within
a special lifted space. However, all known solutions to this problem essentially reduce to some
form of APSP, and hence take at least quadratic time, even for special object types.

In this work, we consider the unweighted form of the problem, for which we devise sub-
quadratic approximation algorithms for many special cases of objects, including line segments
and disks. In this paradigm, we are able to devise algorithms that are fundamentally different
from the APSP-based approach. In particular, we will give Monte Carlo randomized additive
+1 approximation algorithms running in Õ(n

3
2 ) time for disks, axis-aligned line segments and

rectangles, and Õ(n
11
6 ) time for line segments and constant-complexity convex polygons. We

will also give deterministic multiplicative-additive approximation algorithms that, for any value
ε > 0, guarantee a solution of size (1 + ε)OPT + 1 while running in Õ

(
n
ε2

)
time for disks,

axis-aligned line segments and rectangles, and Õ
(
n4/3

ε2

)
time for line segments and constant-

complexity convex polygons.

1 Introduction

The point-separation problem asks whether two points in the plane can be separated by a small
number of objects. Specifically, we are given two points s and t, and a set of (weighted) candidate
geometric objects C in the plane. Then, we wish to compute the minimum-weight subset of C
separating s and t. That is, we ask for the minimum-weight subset C ⊂ C so that if we subtract
every element of C from the plane, s and t then lie in different connected components. An example
of this problem can be found in Figure 1.

Algorithmically, point-separation has been studied by a number of works, with a few different
computational models [GKV11, CG16, CM18, KLSS21, KLS+22, SJN25a]. The most general model
is what Spalding-Jamieson and Naredla [SJN25a] call the oracle model. In the oracle model, it is
assumed that each object c is assigned a canonical point xc ∈ c. Then, it is assumed that there
is an O(1)-time oracle to answer the following form of query:

• For a pair of objects c, c′ ∈ C, the oracle must be able to determine if the union c∪c′ contains a
path from xc to xc′ that crosses the line segment st an even number of times, and (separately)
one that crosses the line segment st an odd number of times.

1



s t s t

Figure 1: An instance of the (s, t) point-separation problem with objects that are simple curves,
and a candidate (non-optimal) set of objects that separate s and t.0

Note that these operations are quite simple, and apply to a wide variety of object types, including
disks, line segments, and even constant-complexity polygons and polygonal regions. A form of this
model was first used by Cabello and Giannopoulos [CG16], who gave an exact polynomial-time
algorithm for point-separation under this model.

More recently, Spalding-Jamieson and Naredla [SJN25a] showed that point-separation can be
reduced to computing the minimum of a linear number of (unconstrained) shortest-path distances in
a special geometric intersection graph, which is a graph whose vertices correspond to geometric
objects and whose edges correspond to pairwise intersections. However, the vertices used for their
graph are not the input objects of the point-separation problem, which are embedded in the plane.
Rather, in their graph, the geometric objects are embedded in the “homology cover space”1. The
geometric objects in the homology cover space they used come in pairs, each induced by a single
planar object in C. These are the lifted objects. The shortest-path distances they compute are
then exactly the distance between the two elements of each pair. This approach is similar to a
construction that has been used for maximum flow on surface graphs [CEFN23].

Spalding-Jamieson and Naredla also gave fine-grained (conditional) lower bounds on point-
separation for many classes of objects, including Ω

(
n2−ε

)
lower bounds for many classes of weighted

objects, and Ω
(
n

3
2
−ε

)
lower bounds for many classes of unweighted objects. Notably, both bounds

apply for line segment objects. However, it remains open to determine if there are any non-trivial
classes of objects for which point-separation can be solved in truly subquadratic time. As a step
towards this goal, we present several subquadratic approximation algorithms.

1.1 Our Results

We focus on the unweighted point-separation problem. Our results are given in Table 1. The results
in this paper roughly decompose into two components.

The first set of results assumes the existence of single-source shortest-path algorithms within

0Figure originally from Spalding-Jamieson and Naredla [SJN25a, SJN25b].
1For completeness: the homology cover is specifically a one-dimensional Z2-homology cover of the (extended) plane

with small holes at s and t. The extended plane with these holes is homeomorphic to an annulus, so the homology
cover space is equivalent to the non-trivial Z2-torsor over the annulus. That said, the steps of the reduction will be
framed in elementary terms requiring no background in topology.

2Convex polygons and rectangles can either include or exclude their interiors (and mixing the two types is okay).
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Object Type Running Time Randomized?

Approximation Guarantee: OPT+ 1

Disk O(n3/2(log n)2) Monte Carlo (w.h.p.)

Line segment Õ(n11/6) Monte Carlo (w.h.p.)

Rectilinear line segment O(n3/2(log n)2) Monte Carlo (w.h.p.)

O(1)-complexity convex polygon2 Õ(n11/6) Monte Carlo (w.h.p.)

Axis-aligned rectangle2 O(n3/2(log n)2) Monte Carlo (w.h.p.)

Approximation Guarantee: (1+ ε)OPT+ 1

Disk O
(
n(logn)3

ε2

)
Deterministic

Line segment Õ
(
n4/3

ε2

)
Deterministic

Rectilinear line segment O
(
n(logn)3

ε2

)
Deterministic

O(1)-complexity convex polygon2 Õ
(
n4/3

ε2

)
Deterministic

Axis-aligned rectangle2 O
(
n(logn)3

ε2

)
Deterministic

Approximation Guarantee: OPT+ k

Disk O
(
n2 logn

k

)
Deterministic

Line segment Õ
(
n7/3

k

)
Deterministic

Rectilinear line segment O
(
n2 logn

k

)
Deterministic

O(1)-complexity polyline Õ
(
n7/3

k

)
Deterministic

O(1)-complexity rectilinear polyline O
(
n2 logn

k

)
Deterministic

Table 1: Approximation algorithms for the point-separation problem with restricted objects.

the geometric intersection graph in the homology cover. There are three such results, each of
which provides a different approximation guarantee using a different method, resulting in the three
sections of the table. Two of these methods further require the objects to be convex if they intersect
the line segment st.

The second set of results provide these fast single-source shortest-path algorithms within geo-
metric intersection graphs in the homology cover. These use different geometric tools depending
on the class of objects.

2 Methods

Our algorithms rely on three main components: 1) Casting the point separation problem as a
shortest path problem in the geometric intersection graphs in the homology cover. 2) Approximating
the minimum shortest path with a small number of exact shortest path queries. 3) Calculating
exact shortest paths quickly in the homology cover using geometric properties.

2.1 Homology Cover

The geometric intersection graph in the homology cover can be viewed as a lifted form of the
geometric intersection graph of C in the plane using canonical points and the segment st. Two
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vertices are created for each object. One is given a label of −1, and the other is given a label of 1.
When the path between the selected canonical points passes through st an even number of times,
edges between the lifted vertices of the same label are created. If the path passes through st an
odd number of times, edges between the lifted vertices of opposite labels are created. See Figure 2
for an example. We call this graph G, and we assign its vertices weights according to the weights
of the objects.

2.2 Fast Shortest-Paths Queries

Recent work has yielded faster shortest path algorithms in a variety of geometric intersection graphs:
Disks [dBC25a, dBC25b], O(1)-complexity polylines [SJN25a], and O(1)-complexity rectilinear
polylines [GK07, GK09, Ble08]. We are able to strengthen these techniques to also apply them to
G. This forms a key sub-routine for our algorithms that we will apply as a black-box.

2.3 Shortest-Path Approximation

s t

Figure 2: The intersection graph in the homology
cover of a collection of disks. Vertices labelled −1
and 1 are blue and pink, respectively. Blue ver-
tices and edges, and pink vertices and edges both
appear as separate geometric intersection graphs
for the disks, except for edges crossing the line
segment st where they swap.

Spalding-Jamieson and Naredla [SJN25a] showed
that the optimal solution to the point-
separation problem corresponds to the shortest-
path between a pair of vertices in G created
from the same object, and that the objects
in the optimal solution correspond exactly to
the vertices along this path. They use this di-
rectly to give APSP-based approaches. Our al-
gorithms instead use several different tools to
obtain approximations of the global minimum:

• Random sampling. One interest-
ing feature of G is that all shortest-paths
have complementary shortest-paths that
swap all the labels along the path. As
a consequence, it can be shown that the
minimum shortest-path between a pair of
vertices is actually a cycle, and it can
be found by performing the shortest-path
computation for any pair of complemen-
tary vertices along this cycle. Hence, if
the optimal solution is sufficiently large,
it can be found by random sampling.
• Upper and lower bounds for

path-lengths. An important feature of any graph is that shortest-path lengths for a given
pair of vertices also provide upper and lower bounds for shortest-paths of nearby vertices
via the triangle inequality. We use lower bounds to reduce the search space of a special
subroutine, and we use upper bounds to provide running time guarantees.
• Divide and Conquer. We use divide and conquer approaches to reduce the search space

of the global point-separation problem. This kind of approach uses a special subroutine that
produces a 1-hop path separator of sorts, with lower bounds for the length of every shortest-
path that uses a vertex in the separator. This entire divide and conquer approach is inspired
by Reif’s algorithm for minimum (s, t)-cut in a planar graph [Rei83].
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Abstract

The (unweighted) point-separation problem asks, given a pair of points s and t in the
plane, and a set of candidate geometric objects, for the minimum-size subset of objects whose
union blocks all paths from s to t. Recent work has shown that the point-separation problem
can be characterized as a type of shortest-path problem in a geometric intersection graph within
a special lifted space. However, all known solutions to this problem essentially reduce to some
form of APSP, and hence take at least quadratic time, even for special object types.

In this work, we consider the unweighted form of the problem, for which we devise sub-
quadratic approximation algorithms for many special cases of objects, including line segments
and disks. In this paradigm, we are able to devise algorithms that are fundamentally different
from the APSP-based approach. In particular, we will give Monte Carlo randomized additive
+1 approximation algorithms running in Õ(n

3
2 ) time for disks, axis-aligned line segments and

rectangles, and Õ(n
11
6 ) time for line segments and constant-complexity convex polygons. We

will also give deterministic multiplicative-additive approximation algorithms that, for any value
ε > 0, guarantee a solution of size (1 + ε)OPT + 1 while running in Õ

(
n
ε2

)
time for disks,

axis-aligned line segments and rectangles, and Õ
(
n4/3

ε2

)
time for line segments and constant-

complexity convex polygons.

1 Introduction

The point-separation problem asks whether two points in the plane can be separated by a small
number of objects. Specifically, we are given two points s and t, and a set of (weighted) candidate
geometric objects C in the plane. Then, we wish to compute the minimum-weight subset of C
separating s and t. That is, we ask for the minimum-weight subset C ⊂ C so that if we subtract
every element of C from the plane, s and t then lie in different connected components. An example
of this problem can be found in Figure 1.

Geometric intersection graphs are graphs whose vertices represent geometric objects and whose
edges are exactly intersections between those objects. Shortest-path problems in geometric inter-
section graphs have garnered significant interest [CS16, CS17, Skr18, CS19, WX20, BKBK+22,
WZ22, WZ23, BW24, CGL24, DKP24, HHZ24, AOX25, CH25, BWB25, dBC25a, CCG+25]. The
point-separation problem has recently also been shown to be a form of shortest-path problem in a
geometric intersection graph [SJN25a], although not in the plane but rather in a “lifted” space.

Point-separation captures a number of real-world scenarios, particularly problems of detecting
or preventing entrances/exits from a region. For instance, if you wanted to install radar sensors
(each able to detect within a fixed radius) around an isolated facility to detect any unexpected
visitors approaching the facility, and you had a number of candidate installation locations based

1
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Figure 1: An instance of the (s, t) point-separation problem with objects that are simple curves,
and a candidate (non-optimal) set of objects that separate s and t.0

on the terrain and foliage that would be protected from wildlife: Radar sensors can be quite
expensive, so you’d like to minimize the number of them required to guarantee detection of anyone
who approaches. The point s is your facility, the point t is at infinity (or some point sufficiently
far away), and each candidate radar location becomes a disk object with the given radius.

An algorithm for point-separation also forms a sub-routine in a constant approximation-algorithm
for the so-called “barrier resilience” problem [KLSS21].

Algorithmically, point-separation has been studied by a number of works, with a few different
computational models [GKV11, CG16, CM18, KLSS21, KLS+22, SJN25a]. Essentially the most
general model is what Spalding-Jamieson and Naredla [SJN25a] call the “oracle model”, which
assumes the existence of an oracle with the following properties:

• Assume that each object c has a canonical point xc ∈ c (arbitrary).

• For a pair of objects c, c′ ∈ C, the oracle must be able to determine if the union c∪c′ contains a
path from xc to xc′ that crosses the line segment st an even number of times, and (separately)
one that crosses the line segment st an odd number of times.

• Queries to this oracle are assumed to take O(1) time.

Note that these operations are quite simple, and apply to a wide variety of object types, including
disks, line segments, and even constant-size polygons. This model was first used by Cabello and Gi-
annopoulos [CG16] in a slightly different form than what is presented here. In particular, they gave
an exact polynomial-time algorithm for point-separation under this model. Essentially, they show
that point-separation can be reduced to a linear number of “constrained” shortest-path computa-
tions in the geometric intersection graph of C. This isn’t quite analogous to the “unconstrained”
shortest-path problems above, but it was an important step.

More recently, Spalding-Jamieson and Naredla [SJN25a] essentially showed that point-separation
can be reduced to computing the minimum of a linear number of (unconstrained) shortest-path
distances in a slightly different geometric intersection graph. Specifically, the geometric objects are
embedded in a space called the “homology cover”1, and the objects themselves come in pairs, each

0Figure originally from Spalding-Jamieson and Naredla [SJN25a, SJN25b].
1The “homology cover” is specifically a one-dimensional Z2-homology cover of the (extended) plane with small

holes at s and t. In our case, this space is homeomorphic to an annulus. That said, the steps of the reduction will be
framed in elementary terms requiring no background in topology.
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induced by a single planar object in C. The distances to compute are then exactly the distance
between the two elements of each pair. This approach is similar to a construction that has been
used for maximum flow on surface graphs [CEFN23]. We will give a complete description of their
framework for our purposes in the next section.

It can be shown that the most general form of Spalding-Jamieson and Naredla’s algorithm is not
fundamentally different from that of Cabello and Giannopoulos. In fact, the constrained shortest-
path problem used by Cabello and Giannopoulos can be reduced to an unconstrained shortest-path
problem in a graph equivalent to the one used by Spalding-Jamieson and Naredla. However, the key
difference is that the reduction of Spalding-Jamieson and Naredla specifically induces a geometric
representation of this graph (in the homology cover), and hence many of the methods for shortest-
path problems on geometric intersection graphs can be applied with some modification. This results
in faster algorithms for many classes of objects, including disks and line segments. That said, all the
algorithms of Spalding-Jamieson and Naredla (and earlier work) essentially reduce to the all-pairs
shortest-paths (APSP) problem, and so there is a methodological quadratic lower bound based on
the output size of APSP (up to some sub-polynomial improvements from word-packing tricks).

Spalding-Jamieson and Naredla also gave fine-grained (conditional) lower bounds on point-
separation for many classes of objects, including Ω

(
n2−ε

)
lower bounds for many classes of weighted

objects, and Ω
(
n

3
2
−ε

)
lower bounds for many classes of unweighted objects. Notably, both bounds

apply for line segments objects. However, it remains open to determine if there are any non-trivial
classes of objects for which point-separation can be solved in truly subquadratic time. As a step
towards this goal, we present several subquadratic approximation algorithms.

1.1 Related Work

There are a number of problems related to point-separation. In their recent work, Spalding-
Jamieson and Naredla give a comprehensive history of these problems [SJN25b, Appendix A],
including the hardness of generalizations. We will refrain from detailed discussion here, but we will
briefly discuss one important piece of inspiration for our work: Algorithms for minimum (s, t)-cut
in an undirected planar graph.

The minimum (s, t)-cut problem in an undirected planar graph asks, given a plane graph G
and two vertices s and t, for the minimum set (or weighted set) of edges whose removal separates
s and t. Note that point-separation generalizes this problem via non-crossing line segment objects.
When s and t are both on the same face, Ford and Fulkerson [FJF56, Section 3] show that the
minimum (s, t)-cut problem in a planar graph reduces to a single shortest-path problem in the dual
graph of G∪ {e} for a single extra edge e. Itai and Shiloach [IS79] generalized this approach to all
planar graphs by solving a set of similar shortest-path problems in a generalization of this modified
dual graph. Notably, they might need to compute up to a linear number of shortest-paths with
their approach: Each of these computations is performed for an element of a dual shortest-path
between chosen faces incident to s and t. Hence, if this dual shortest-path is long, the runtime of
their algorithm is slow. Reif [Rei83] improved on this approach by employing a divide and conquer
scheme. Essentially, by observing that (save for ties) none of these shortest-paths can intersect,
Reif was able to recover a global optimum in near-linear time. At a high-level, Reif computes a
shortest-path for a “middle” vertex that is far from both s and t, and then deletes all vertices along
this path, disconnecting the graph into two independent subproblems in which the new values of s
and t are twice as close together.

The time complexity of Reif’s algorithm has been since been surpassed, but we have mentioned
these results because they are analogous to the progress we will present on point-separation. Essen-
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Object Type Running Time Randomized?

Approximation Guarantee: OPT+ 1 (Section 4)

Disk O(n3/2(log n)2) Monte Carlo (w.h.p.)

Line segment Õ(n11/6) Monte Carlo (w.h.p.)

Rectilinear line segment O(n3/2(log n)2) Monte Carlo (w.h.p.)

O(1)-complexity convex polygon2 Õ(n11/6) Monte Carlo (w.h.p.)

Axis-aligned rectangle2 O(n3/2(log n)2) Monte Carlo (w.h.p.)

Approximation Guarantee: (1+ ε)OPT+ 1 (Section 5)

Disk O
(
n(logn)3

ε2

)
Deterministic

Line segment Õ
(
n4/3

ε2

)
Deterministic

Rectilinear line segment O
(
n(logn)3

ε2

)
Deterministic

O(1)-complexity convex polygon2 Õ
(
n4/3

ε2

)
Deterministic

Axis-aligned rectangle2 O
(
n(logn)3

ε2

)
Deterministic

Approximation Guarantee: OPT+ k (Section 6)

Disk O
(
n2 logn

k

)
Deterministic

Line segment Õ
(
n7/3

k

)
Deterministic

Rectilinear line segment O
(
n2 logn

k

)
Deterministic

O(1)-complexity polyline Õ
(
n7/3

k

)
Deterministic

O(1)-complexity rectilinear polyline O
(
n2 logn

k

)
Deterministic

Table 1: Approximation algorithms for the point-separation problem with restricted objects.

tially, the algorithms of all previous approaches, including the recent results of Spalding-Jamieson
and Naredla [SJN25a], are analogous to the methods of Itai and Shiloach, in that they solve a
shortest-path problem for a large number of vertices. That is, they involve computing a large
number of shortest-paths within a static graph. In contrast, our two most interesting results will
instead both be analogous to Reif’s algorithm: We will employ a divide and conquer that finds a
“path” of objects in a certain graph at each level (but not necessarily a shortest-path in our case),
and then deletes the path along with its 1-neighbourhood. By choosing the path to pass through
one particular object in the “middle” of s and t, they will become twice as close, in a sense. In
order for this closeness metric to work, we will require that certain objects be convex.

1.2 Our Results

Our results are given in Table 1. The results in this paper roughly decompose into two components.
Section 7 gives fast single-source shortest-path algorithms within geometric intersection graphs in
the homology cover. Sections 4 to 6 give approximation schemes for the point-separation problem
with convex objects which rely on many calls to a single-source shortest-path oracle. In particular,
Section 4 gives a randomized scheme for additive +1 approximations, Section 5 gives a deterministic
multiplicative-additive approximation-scheme (arbitrary multiplicative factor, additive +1 term),

2Convex polygons and rectangles can include or exclude their interiors (mixing the two types is okay).
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s t s t

Figure 2: The “portal” construction of the homology cover. Each colour (or dot/dash pattern) is
a single closed curve in the homology cover, and all of the curves are disjoint. The two solid lines
are the “portals”.0

and Section 6 gives a deterministic algorithm with parameterized additive error. The listed results
come from combining these with fast single-source shortest-path algorithms of geometric intersec-
tion graphs involving convex objects, so new advances in shortest-path algorithms in geometric
intersection graphs may similarly yield further improved approximation algorithms. We give the
derivations for these combinations in Section 7.1.

2 Reduction to Shortest-Paths

In this section, we outline the framework of Spalding-Jamieson and Naredla [SJN25a], which reduces
the point-separation problem to a type of shortest-path problem in a geometric intersection graph
embedded in the “homology cover”. We will focus on simplicity of presentation, using some slight
simplifications. At the end, we will also add some additional tools for our purposes.

A simplifying assumption Suppose there is a single object c ∈ C that separates s and t. This
also includes objects that contain s or t. It can be shown that we can test for the existence of
such an object in the oracle model by checking if the canonical point xc of an object has a path to
itself contained entirely within c that crosses st an odd number of times. Hence, we can find all
such objects in linear time in the oracle model, so we can assume without loss of generality that C
contains no such objects.

The homology cover We now define the homology cover. Consider the plane with two punctures
at the points s and t. Let π be the line segment st. Next, create two copies of R2 \st, and call them
P−1, P1. Each of P−1 and P1 has a line-segment shaped “hole”. Connect the top of the hole in P−1

to the bottom of the hole in P1, and vice versa, making sure to leave the endpoints unconnected.
The resulting space is what we call the homology cover. We will refer to P−1 and P1 as the “two
copies of the plane” making up the homology cover. The values −1 and 1 can also be thought of as
“indicator bits”. We will use similar notation for so-called “indicator bits” later too. An equivalent
formulation is to create two pairs of “portals”, so if a path traverses up into line segment in one
copy of the plane, it comes out in the other copy (see Figure 2).

The geometric intersection graph in the homology cover Now we describe the geometric
intersection graph within the homology cover that we will use. We will call this graph G. More
specifically, we will describe how to formulate the set of objects in the homology cover which is
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used as the vertex set for this graph. Afterwards, we will also give a simplified test for when two
such objects intersect.

As mentioned, we started with the set C of n objects within the plane, and we will construct a
set of 2n objects called C. We assume that each object c ∈ C has an associated canonical point
xc. That is, there are exactly two points in the homology cover that project into xc. One of them
is in P−1, and the other is in P1. Call these x−1

c and x1c , respectively. Since we assumed no single
object separates s and t, the set of points in the homology cover that project into c has exactly two
connected components – these will form the two objects in the homology cover induced by c. We
define c−1 to be the connected component containing x−1

c , and c1 to be the connected component
containing x1c .

Let b1, b2 ∈ {−1, 1} be “indicator bits”, and let c1 and c2 be objects in C. A simple (computa-
tional) way to check if two objects cb11 and cb22 intersect is to check if there is a path from xc1 to xc2 ,
contained entirely within c1 ∪ c2, that crosses the segment st an odd number of times if b1 ̸= b2, or
an even number of times if b1 = b2. This check can be easily accomplished for line segments and
disks, for instance. These checks can be used to define the edges of G, although in many cases,
geometric methods are more desirable.

Importantly, it should be noted that G is a geometric intersection graph. Not only that, but it
is a geometric graph of essentially the same class of objects as C. For instance, if C is a collection of
line segments (where a line segment is defined as the set of convex combinations of two endpoints),
then so is C. Due to prior assumptions, this is true even though C itself has some atypical properties.
See Figure 3 for an example of the geometric intersection graph in the homology cover G.

Useful properties for approximations We now highlight some properties of the homology
cover and G that will be useful for our approximation algorithms.

First, observe that G has an inherent symmetry: Let c1, c2 ∈ C be objects, and let b1, b2 ∈
{−1, 1} be indicator bits. Then cb11 c

b2
2 ∈ E(G) if and only if cb21 c

b1
2 ∈ E(G).

Finally, we arrive at the main characterization of the point-separation problem as a form of
shortest-path problem:

Proposition 2.1. For a set of objects C, and the graph G, let Dc denote the elements along an
arbitrary shortest-path in G from c−1 to c1. Then, the objects in C corresponding to the vertices
along this path together separate s and t – in fact, this is true of any path between c−1 and c1 in
G. Let Fc ⊂ C denote the objects in this induced separating set. If Dc is the shortest such path
over all c ∈ C, then the set Fc is an optimal solution to the point-separation problem. Furthermore,
an object c ∈ C is a part of an optimal solution if and only if Fc itself is an optimal solution.
Consequently, for c′ ∈ Fc, |Fc′ | ≤ |Fc| and |Dc′ | ≤ |Dc|.

See Figure 3d for an example of such a path, and see Figure 3e for the corresponding set of
objects.

Since we are particularly interested in approximation algorithms for point-separation, we will
point out an important consequence of this result:

Corollary 2.2. Let c, c′ ∈ C be objects, and let b, b′ be indicator bits. Suppose that cb and c′b
′
are

at distance d in the intersection graph G in the homology cover, or that c and c′ are at distance d
in the intersection graph G in the plane. Then |Dc′ | ≤ |Dc|+ 2d, and |Fc′ | ≤ |Fc|+ d.

This follows from the symmetry of G.
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(a) The intersection graph with the path π = st.

s ts t

(b) The intersection graph after deleting the edges
whose underlying paths cross π an odd number of
times.

s t

s t

(c) Two copies of the intersection
graph are connected with “cross-
ing” edges (in purple).

s t

s t

(d) A shortest-path in the homol-
ogy cover between two copies of
an object (a path Dc).

s t

(e) The corresponding set of ob-
jects that separate s and t (a set
Fc).

Figure 3: How the intersection graph can be transformed into the intersection graph in the homology
cover.0

2.1 Notation and Time Complexity

Fast single-source shortest-path algorithms are widely known for a number of geometric intersection
graphs in the plane. For example, a single-source shortest-path in a disk graph with n vertices has
recently been shown to be solvable in O(n log n) time [BWB25, dBC25a], even though the graph
itself may have Θ(n2) edges. Some of these algorithms are also already known to extend to the
homology cover. In Section 7, we will discuss such extensions, including new results.

All the algorithms we will describe in this paper will make use of such single-source shortest-
path algorithms as a black-box. Every such computation will measure the distance from one copy
of an object to another, so we will consistently use the notation defined in Proposition 2.1: Dc

denotes the sequence of elements along the shortest-path in G, and Fc denotes the corresponding
separating set of objects. Furthermore, we will measure the time complexity of our algorithms
in terms of the number of single-source shortest-path computations performed. Let TimeSSSP(n)
denote the time to compute Dc (and, consequently, Fc) among n objects. For instance, among disk
objects, TimeSSSP(n) ∈ O(n log n). We will also assume that TimeSSSP(n) is super-additive. That
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is, for problem sizes a, b ≥ 0, TimeSSSP(a) + TimeSSSP(b) ≤ TimeSSSP(a+ b). This will be useful in
analyzing a divide and conquer approach later.

3 A Monte Carlo Algorithm

In this brief section, we will give a randomized Monte Carlo algorithm of sorts:

Theorem 3.1. For a given pair of points s and t, and a set of objects C, there is an iterative
algorithm with the following properties:

• Each iteration takes TimeSSSP(n) time, and produces a separating set of objects.

• If there exists a separating set of objects C ⊂ C, then, with high probability, the algorithm will

find a separating set of objects C ′ ⊂ C with size |C ′| ≤ |C| in O
(
n
|C| log n

)
iterations.

Proof. The algorithm is quite simple: In each iteration, a uniformly random object c is sampled
from C, and then Dc and Fc (defined in Proposition 2.1) are computed. By Proposition 2.1, a set
of objects with size at most |C| will be found if c ∈ C, so the resulting iteration count is simply
the number required to sample an element of C with high probability.

A useful consequence of this theorem is that we can probabilistically determine if a separating
set of size O(

√
n) exists within O(

√
n log n) iterations. We will use this consequence in the next

section.
Another method of deriving this theorem would be to note that the so-called “VC-dimension”

of the sets {Dc}c∈C is bounded [dLdSV23], so we can produce an “ϵ-net” with high-probability.

4 A Fast Additive +1 Approximation

We will now present one of the most notable algorithms of this work. Specifically, we will give an
additive +1 approximation of point-separation that is, in many cases, computable in subquadratic
time. This algorithm will be analogous to Reif’s algorithm for maximum (s, t)-flow in a planar
graph. In particular, it will employ a divide and conquer approach over a path from s to t, and a
form of “separators”. These separators will be 1-hop path separators that are balanced relative to
intersections of the line segment st, but not balanced in any other sense.

Theorem 4.1. For a given pair of points s and t, and a set of n objects C, where each object
intersecting the segment st is convex, assume the intersection of each c ∈ C with the st can be
computed in constant time. Then, there is a randomized Monte Carlo algorithm that produces an
additive +1 approximation for the point-separation problem in O ((

√
n log n) · TimeSSSP(n)) time

(with high probability), where TimeSSSP(n) is the time required to compute a shortest-path through
the geometric intersection graph in the homology cover.

The most notable restriction of this algorithm is that it requires some of the objects to be
convex. However, this is true of many of the geometric object classes we have already mentioned,
such as disks and line segments.

Before giving the proof, we highlight several of the main techniques we will employ:

• The first key insight is that, using the Monte Carlo algorithm in the previous section, if the
optimum solution is of size Ω(

√
n), then we can find it with high probability.
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• Next, we employ a divide and conquer strategy. Specifically, we will consider the intersections
of the line segment st with objects. Loosely, we will use these to define an ordering of the
objects intersecting the segment. The details of this ordering, and why it will be useful, are
related to the assumption of convexity.

• The optimality guarantees of the divide and conquer strategy will assume that the optimum
solution is of size O(

√
n), but the running time analysis will not.

• To perform the “divide” part of the divide and conquer strategy, we shall find a path of objects
in the homology cover G from c−1 to c1, where c is the “middle” object in the ordering. In the
simplest case, this path will be exactly Dc, although this is not true in the most challenging
case, where it will not even be a shortest path. Regardless, bounds will be derived on Fc′ for
every c′ in the path between the copies of c, as well as its 1-hop neighbourhood. Specifically,
for every such c′, we will either compute Fc′ , or it will be shown |Fc′ | is at least Ω(

√
n) (larger

than the best solution assumed to have been found by the Monte Carlo algorithm). Then,
the path and its 1-hop neighbourhood will be removed from G, and the remaining connected
components will be recursed on separately.

• The algorithm to “combine” will be quite simple: Of every separating set Fc computed
throughout all steps, output the smallest. Since we are deleting vertices from the graph in
the division step, the Fc sets in lower levels of the recursion will not be “true” minimum Fc
sets for those vertices, but we will argue that this is okay regardless.

Proof. We will describe each aspect of the algorithm in turn, while proving all the necessary prop-
erties for correctness and time complexity along the way.

Applying the Monte Carlo algorithm Apply Theorem 3.1 to determine if, with high probabil-
ity, the optimal solution to the point-separation problem has at least f1(n)−1 objects, where f1(n)
is a function we will choose later. Then, if it does, we halt the algorithm, since the Monte Carlo

algorithm also provides such a solution. Regardless, this step takes O
((

n
f1(n)

log n
)
· TimeSSSP(n)

)

time. We call this the Monte Carlo step. An implementation of this step requires choosing f1(n).

Divide and conquer Henceforth, we will describe a divide and conquer approach. We will make
specific approximation guarantees for every shortest-path distance. In the case that the optimal
solution contains less than f1(n)−1 objects, these specific approximation guarantees will also imply
a global approximation on the optimal solution to the point-separation problem. Combined with
the Monte Carlo step, this gives an approximation guarantee in general.

Segment intersection ordering We will create an ordering of all objects intersecting st. We
have assumed all objects are convex. Hence, for each object c ∈ C intersecting st, that intersection
must be exactly a sub-segment of st. Let [0, 1] represent the sub-segment st. For every object
intersecting st, we can define a corresponding sub-interval of [0, 1]. There is one important simple
property of these intervals that we will use: If two objects c and c′ (both intersecting st) do not
mutually intersect, then their corresponding intervals do not overlap. The contrapositive of this
property is that if two intervals overlap, then the corresponding objects must also overlap.

We will order all the objects intersecting st according to the left-endpoints of their respective
sub-intervals (see Figure 4). For an ordering with k elements, consider a “middle” element in this
ordering. That is, an element with at most k/2 elements both before and after it. Let c be the
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Figure 4: The convex objects intersecting st are ordered based on their “first” intersection point.

corresponding object. Suppose that we find a connected set of objects that includes c, and separates
s and t (such as Fc). We will call such a set a dividing path through c, since the sets we will
use will always correspond to paths in G. Then, if we delete all the objects in the dividing path,
and their 1-hop neighbourhoods, we observe the following: For two objects c′, c′′ both intersecting
st and both not deleted in the previous process: If c′ < c < c′′ in the ordering, then c′ and c′′

are in different connected components of the geometric intersection graph (and hence their copies
are in different connected components of G) after the deletions. This is the main operation that
will allow us to perform divide and conquer, since it allows us to halve the length of the sequence
at each level of recursion, while effectively distributing the remaining objects among the different
recursive calls.

Finding good dividing paths Let c be the “middle” object defined in the previous step. With-
out any constraints, finding a dividing path through c is quite simple: We could simply take Dc.
However, this choice will not always suffice for our ultimate goal of tackling the point-separation
problem. We will be deleting all the objects corresponding to vertices in our dividing path, as well
as their 1-hop neighbourhoods. Hence, we need to be able to say something about the size of Fc′

for all such objects c′, as well as all sets Fc′′ even including some object c′ that will be deleted.
The way we will accomplish this is as follows: With our final connected set of objects P 2 to be

deleted along with its 1-hop neighbourhood N1(P ), we will make one of the following guarantees
for any object c′ ∈ P (regardless of the size of the optimum solution):

• We will have computed Fc′ directly.

• We will have computed Fc′′ for some element c′′ ∈ P with |Fc′′ | ≥ f1(n) + d so that c′ has
distance at most d to c′′ in the geometric intersection graph G, |Fc′ | ≥ |Fc′′ | − d ≥ f1(n).

Consequently, we also obtain the same guarantees up to an additive +1 term for any p′ ∈ N1(P ).
We will call these guarantees the dividing path approximation guarantees. In general, |P |
may be quite large, hence why we do not wish to compute Fc′ for every object c′ in P . This leads
to a conflict requiring some balance: We must fulfill the dividing path approximation guarantees
while minimizing the total runtime required to compute the dividing path.

The algorithm to find the dividing path P is as follows:

Algorithm 4.2. DividingPath(c, f2(n,m), f3(n,m), f4(n,m))

• Compute Dc and Fc (one shortest-path computation).

2Note that this is slight abuse of notation: P is a path through G, and hence consists of a subset of objects from
C in the homology cover, although here we use it as a set of elements from C corresponding to the induced elements.
We will continue to slightly abuse the notation P in this manner.
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• Let m := |Fc|. Recall that 1 ≤ m ≤ n by definition.

• Case 1: If m ≤ f2(n,m), then:

– For each object c′ ∈ Fc, compute Fc′.

– Return P := Dc.

(O(f2(n,m)) shortest-path computations)

• Case 2: Else if m > f2(n,m):

– Denote Dc = [c−1 = vb00 , . . . , v
bm
m = c1].

– Select a subsequence i1, . . . , ir of indices of Dc so that each j ∈ {1, . . . ,m−1} is in some
interval [il, il+1], and |il+1 − il| ≤ f3(n,m).

– For each l ∈ {1, . . . , r}, compute the pair (Dvil
, Fvil ).

(r = O
(

m
f3(n,m)

)
shortest-path computations)

– Case 2a: If every |Fvil | > f4(n,m) then return the path P := Dc.

Case 2b: Else, let l be the smallest index where |Fvil | ≤ f4(n,m).

∗ Let P ′ = [u1, . . . , up] =DividingPath(vil).

∗ Return

P :=
[
c−1 = vb00 , v

b1
1 , . . . , v

bil
il

= u1, . . . , up = v
−bil
il

, . . . , v−b11 , v−b00 = c1
]
,

flipping all indicator bits in P ′ if necessary.

This is the dividing path algorithm. We have described the algorithm in a very general
form, since we will use it again for another proof in the next section. An implementation of the
dividing path algorithm requires choosing f2, f3, and f4. In this particular proof, we will choose
them so that the dividing path algorithm will terminate after at most one recursive call. Moreover,
we will choose f1, f2, f3, f4 as functions only in n, and not in m.

We must choose the functions f1, f2, f3, f4 to accomplish two things simultaneously: First, we
must fulfill the dividing path approximation guarantees. Consider the following choices: For any
fixed constant α, pick f1(n) = α

√
n, f2(n) = 2α

√
n, f3(n) = α

√
n, and f4(n) = 2α

√
n. Under

these choices, case 2b occurs only if f4(n) = f2(n). Hence, case 1 is always triggered in the second
layer of recursion, and so there are at most 2 layers of recursion, greatly simplifying our analysis.

Note that the dividing path approximation guarantees are always fulfilled in case 1, so we
need only consider cases 2a and 2b. In case 2a, every object c′ induced by a vertex in P has
|Fc′ | ≥ f4(n)− f3(n) = α

√
n = f1(n), fulfilling the guarantee. Similarly, in case 2b, every object c′

induced by a vertex in P but not P ′ has the same guarantee.
The total time complexity of the dividing path algorithm is fairly easy to analyze. In total, it

takes O
(

n
f3(n)

+ f2(n)
)
shortest-path computations, which is exactly O (

√
n · TimeSSSP(n)) time.

An example run of the dividing path algorithm is given in Figure 5.

Combining Results We now complete the divide and conquer process. The algorithm is as-
outlined: Take the middle object c in the ordering. Compute a dividing path P through c, and
delete P and its 1-hop neighbourhood. Then, recurse on the ordering before c, and the ordering
after c. Note that the residual objects form at least two connected components in G (and G), and
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(a) The intersection graph in the homology cover.

s t

(b) A shortest-path Dc.

s t

(c) Case 2: Well-spaced samples are chosen along
Dc, and Dc′ is computed for each sample c′.

s t

(d) Case 2b: For one of c′, Dc′ is recursed on.

s t

(e) Dc is truncated and then the concatenation of the truncated Dc, Dc′ , and the complementary
objects of Dc is returned.

Figure 5: The dividing path algorithm applied with one recursive call.
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moreover that each connected component is on exactly one side of the union of P and its 1-hop
neighbourhood, so these subproblems are disjoint.

For any c′ among the residual objects, let Fc′ denote the separating set of objects induced by
Dc′ among the original set of objects, and let F ′

c′ instead take from the residual set of objects. Note
that |F ′

c′ | ≥ |Fc′ |. Specifically, we have strict inequality if every shortest-path Dc′ contains some
vertex in P or its 1-hop neighbourhood. We claim this is not an issue, and it suffices to approximate
|F ′
c′ | instead of Fc′ : This follows from the final inequality stated in Proposition 2.1. Specifically, if

Fc′ contains some c′′ in P or its 1-hop neighbourhood, then we have a good approximation of Fc′′

by the dividing path approximation guarantees, and we know that |Fc′ | ≥ |Fc′′ |.

Global approximation guarantees We now show that we have given an additive +1 approxi-
mation to the point-separation problem.

First, consider the case where the optimum solution has at least f1(n)− 1 objects. In this case,
the Monte Carlo step will find the exact optimum solution with high probability.

Second, consider the case where the optimum solution has less than f1(n) − 1 objects. In this
case, we apply the approximation guarantees we have for every c ∈ C to some c∗ minimizing |Fc∗ |.
At some level of recursion, c∗ was included in some dividing path P or its 1-hop neighbourhood.
In either case, there is some c in P so that |Fc| ≤ |Fc∗ | + 1. Furthermore, if any element c′ ∈ Fc
was not part of the residual objects at that level of recursion, it must be the case that |Fc′ | ≤ |Fc|.
Hence, without loss of generality, we may assume that all elements of Fc were part of the residual
objects at that level of recursion. We apply the dividing path approximation guarantees for |Fc|:

• If we have computed Fc directly, then we are done.

• If we have not computed Fc directly, then |Fc| ≥ f1(n), in which case the optimum was found
by the Monte Carlo step with high probability.

Time-Complexity Analysis We analyze the time complexity with no assumptions of the op-
timum solution’s size. There are O(log n) levels of recursion. At each layer, the cost of O (

√
n)

shortest-path computations on the entire graph are incurred. This is not the same as stating
that O (

√
n) shortest-path computations occur at each level. In fact, many more occur. How-

ever, at the ith level of the recursion there are at most 2i different independent subproblems.
Each one is individually performing O (

√
n) shortest-path computations. However, each of the

independent subproblems uses a subgraph disjoint from the subgraphs of the other subproblems.
Hence, since we assumed super-additivity of shortest-path computation time (i.e., TimeSSSP(a+b) ≥
TimeSSSP(a)+TimeSSSP(b) where a and b are sizes of the input graphs), we can give an upper bound
on the total time complexity for the divide and conquer as O ((

√
n log n) · TimeSSSP(n)). The Monte

Carlo step runs in the same time complexity, so our overall time complexity is the same.

5 Fast Deterministic Multiplicative-Additive Approximations

In the previous section, we outlined an additive +1 approximation algorithm for point-separation
that uses a sub-linear number of shortest-path computations. The key step used was a generic
recursive routine to construct a “dividing path”, which proved useful for performing divide and
conquer. The dividing path algorithm template we presented was actually more general than what
was required in the previous section. We will now re-use it.
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In this section, we will show that by choosing a different set of parameterized functions for
the dividing path algorithm, we can obtain a much faster algorithm for point-separation with a
slightly weaker approximation guarantee. In particular, we will obtain a “multiplicative-additive”
approximation guarantee. A key step will be to choose parameters so as to make use of the recursion,
unlike Theorem 4.1 (where it only recurses at most once). In fact, the proof of the new dividing
path guarantees as a whole will be quite different and significantly more complex.

Theorem 5.1. For a given pair of points s and t, and a set of n objects C, where each object
intersecting the segment st is convex, assume the intersection of each c ∈ C with the st can be
computed in constant time. Let 0 < ε ≤ 2 be some value. Then, there is a deterministic algo-
rithm that produces a “multiplicative-additive” approximation for the point-separation problem in

O
((

logn
ε

)2
TimeSSSP(n)

)
time, where TimeSSSP(n) is the time required to compute a shortest-path

through the geometric intersection graph in the homology cover. The specific approximation guar-
antee is that if there exists a solution to the point-separation problem of size k∗, then the algorithm
produces a solution of size at most (1 + ε)k∗ + 1.

Proof. By following the outline of the proof of Theorem 4.1, it suffices to provide parameters
f2(n,m), f3(n,m), and f4(n,m) for Algorithm 4.2 that result in the dividing path algorithm using

O
(
logn
ε2

)
shortest-path computations, in such a manner that it produces a dividing path P in G

with one of the following approximation guarantees for each c′ ∈ P :

• We will have computed Fc′ directly.

• We will have computed Fc′′ directly for some c′′ ∈ P , and we guarantee that |Fc′ | ≥ |Fc′′ |
1+ε .

Although we are making use of the same “template” for computing the dividing paths, the
way we will choose our parameters and prove our result is different in a couple fundamental ways,
and more complicated. Most notably: The algorithm will actually run recursively with more than
constant depth, and the computed Fc′′ sets referred to in the second case of the guarantees will not
be the same ones that are used in Theorem 4.1.

We choose the following parameters:

f3(n,m) = max

{
1,

εm

3(1 + ε)

}
,

f2(n,m) = f4(n,m) =
m√
1 + ε

+ 3.

First, we establish termination and time complexity: Suppose that for some c, |Fc| > f2(n, |Fc|),
and that |Fvil | ≤ f4(n, |Fc|). Then |Fvil | ≤ f4(n, |Fc|) < |Fc|, so a recursive call must decrease the
length of the path (the value of m). Therefore, since m ≤ n, the depth of the recursion must be

O
(

log n

log
√
1 + ε

)
⊂ O

(
log n

ε

)
.

At each level where case 2 is applied, O
(

m
f3(n,m)

)
shortest-path computations are made, which

simplifies to

O
(

m

f3(n,m)

)
⊂ O

(
m · 3(1 + ε)

εm

)
= O

(
3(1 + ε)

ε

)
= O

(
1

ε

)
.
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At the final level where case 1 is applied, if we assume 1 + ε ≤ 2, we have

m ≤ m√
1 + ε

+ 3

=⇒ m ≤ 3

1− 1√
1+ε

=
3
√
1 + ε√

1 + ε− 1

=
3
√
1 + ε(

√
1 + ε+ 1)

(
√
1 + ε− 1)(

√
1 + ε+ 1)

=
3
√
1 + ε(

√
1 + ε+ 1)

(1 + ε)− 1

=
3
√
1 + ε(

√
1 + ε+ 1)

ε

≤ 3
√
2(
√
2 + 1)

ε
=∈ O

(
1

ε

)
.

Thus, in total, we run O
(
logn
ε2

)
shortest-path computations, as desired.

Next, we establish the approximation guarantees: Let c′ be some element of P for which we
did not compute Fc′ directly. This can only occur in case 2. Suppose c′ was added to P by a level
of recursion that used c as the initial input, with m = |Fc|. Regardless of whether or not case 2a
or 2b was taken, we know that c′ must have distance at most f3(n,m) to some c′′ ∈ P with Fc′′

computed, and moreover that |Fc′′ | > f4(n,m) = f2(n,m) (note that in one case, the only valid
choice of c′′ will be c). Hence, by Corollary 2.2, |Fc′ | ≥ |Fc′′ | − f3(n,m) > f4(n,m)− f3(n,m). We
will show that, in this case, f4(n,m)− f3(n,m) ≥ m

(1+ε) .

First, we will show that f3(n,m) = εm
3(1+ε) in this case. Since we are in case 2, we have

m > f2(n,m) = m√
1+ε

+ 3. Hence,

m >
3

1− 1√
1+ε

=
3
√
1 + ε(

√
1 + ε+ 1)

ε
>

3(1 + ε)

ε
=⇒ εm

3(1 + ε)
> 1.

Thus, by assuming again that ε ≤ 1, we have

(1 + ε)
[
f4(n,m)− f3(n,m)

]
= (1 + ε)

[
m√
1 + ε

+ 3− εm

3(1 + ε)

]

= m
√
1 + ε+ 3(1 + ε)− εm

3

≥ m
√
1 + ε− εm

3

= m
(√

1 + ε− ε
3

)

≥ m,

where the last step follows from assuming ε ≤ 1, and hence

(1 + ε)−
(
1 +

ε

3

)2
= 1 + ε−

(
1 + 2ε

3 + ε2

9

)
=
ε(3− ε)

9
≥ 0 =⇒

√
1 + ε− ε

3
≥ 1.

Therefore, we get f4(n,m)− f3(n,m) ≥ m
1+ε , as desired.
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6 A Simple Deterministic Additive +k Approximation

We now outline a deterministic algorithm with an approximation guarantee not attainable by the
previous section, although the guarantee is weaker than that of the Monte Carlo algorithm described
in Theorem 3.1. Unfortunately, the weaker guarantee is not enough for usage in Theorem 4.1.

Theorem 6.1. For a given pair of points s and t, and a set of n objects C, and a parameter k,
there is an algorithm that produces an additive +k approximation for the point-separation problem
in O

(
n
k · TimeSSSP(n)

)
time.

Proof. Assume without loss of generality that G is connected (if not, handle each connected com-
ponent separately). Let T be an arbitrary spanning tree of G (for example, a single-source shortest-
path tree from an arbitrary vertex). Consider an Euler tour around T , obtaining a circular sequence
covering all vertices. Cut this circular sequence at some arbitrary point to obtain a sequence S
covering all vertices v1, . . . , v2n. The key property of this sequence is that the distance from vi to
vj in G is at most |i− j|.

We pick a “net” of vertices in the sequence S. That is, let S′ be the subsequence v1, v1+(2k+2),
v1+2(2k+2), v1+3(2k+2), . . . , v2n. Then, compute Dc and Fc for each c with a vertex in S′. For any
vi ∈ S, there is some v1+j(2k+2) in S

′ so that |i− (1+j(2k+2))| ≤ k. Hence, |Fvi | ≤ |Fv1+j(2k+2)
|+k

by Corollary 2.2, so the smallest set Fc computed for c with a vertex in S′ is an additive +k
approximation for the smallest separating set by Proposition 2.1.

Finally, since we computed a shortest-path only for each element of S′ (plus one extra to
compute T ), and |S′| ∈ O

(
n
k

)
, the algorithm runs in the claimed time complexity.

This algorithm could be sped up for certain classes of objects and small values of k, since
there are some techniques in geometric intersection graphs that can perform shortest-path queries
faster if the shortest-path tree for a nearby vertex (ideally, a neighbouring vertex) is known [CS17].
However, such speedups would come with a poor tradeoff in the form of an additional factor of k
in the time complexity.

7 Fast Shortest-Paths in the Homology Cover

In this section, we discuss methods for computing single-source shortest-paths (SSSP) in the inter-
section graph in the homology cover, G. The object types we focus on in this paper are given in
Table 2, along with two extra types. Our results are primarily based on other advances for SSSP in
geometric intersection graphs, however small modifications to the algorithms are needed to apply
them within the homology cover.

Object Type TimeSSSP(n) Reference

Disk O(n log n) Theorem 7.2

Line segment Õ(n4/3) [SJN25a]

O(1)-complexity polyline Õ(n4/3) [SJN25a]

Rectilinear line segment O(n log n) Theorem 7.4

O(1)-complexity rectilinear polyline O(n log n) Theorem 7.4

Table 2: Summary of SSSP running times for geometric intersection graphs in homology cover. All
running times here are deterministic.
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Disks For the intersection graph of disks in the plane, the fastest single-source shortest-path algo-
rithm is quite recent. Moreover, two groups independently discovered optimal algorithms (optimal
for the algebraic decision tree model):

• De Berg and Cabello [dBC25a, dBC25b] showed that disk graphs in the plane admit structure
called a “clique-based contraction” with some helpful properties, and that this structure can
be computed efficiently.

• Brewer andWang [BWB25, BW25] instead made use of additively-weighted Voronoi diagrams.

Both of these groups’ methods attain O(n log n)-time algorithms for the single-source shortest-path
problem in a unit-disk graph, including the ability to compute a shortest-path tree. We will show
that the method of de Berg and Cabello can be extended to the intersection graph in the homology
cover in the same time complexity.

A clique-based contraction of a graph G = (V,E) is a graph H = (U,F ) so that every u ∈ U
is exactly a subset of V forming a clique. Moreover, it is required that every v ∈ V is in exactly
one u ∈ U (i.e., U is a partition of V ), and that an edge uu′ ∈ F exists in H if and only if there is
some edge vv′ ∈ E with v ∈ u and v′ ∈ u′.

De Berg and Cabello showed that, if G is an intersection graph of n disks C, a clique-based
contraction with |F | = O(n log n) “post-contraction” edges exists, and that it can be constructed
in the same time complexity. Furthermore, the clique-based contraction they construct has the
property that every u ∈ U corresponds specifically to a stabbed clique in G. That is, for each
u ∈ U , there is some point p in the plane contained by every v ∈ u. The resulting lemma is:

Lemma 7.1 ([dBC25a, dBC25b, Proposition 8]). For a geometric intersection graph of n disks C
in the plane, let G be the geometric intersection graph of C. Then, a clique-based contraction of G
with O(n log n) edges can be computed in O(n log n) time.

Another element of their proof involves bichromatic intersection testing: Given two sets
B and R of disks (“blue” and “red” disks), find, for each b ∈ B, if it intersects any element of
R (the element itself need-not be identified). Well-known methods exist for performing this step
among disks in the plane in O((|B|+ |R|) log |R|) time [CS16, CS17, Klo23]. De Berg and Cabello
also showed that, by combining the clique-based contraction of G and the bichromatic intersection
testing algorithm, they can perform shortest-path computations in G in O(n log n) time. Moreover,
these are the only elements needed. That is, if we can compute a clique-based contraction of the
intersection graph G in the homology cover with the same guarantees, and perform bichromatic
intersection testing on the objects C in the homology cover, then we can solve the single-source
shortest-path problem in the same time complexity. This is exactly the method we will employ:

Theorem 7.2. For a set of disks C in the plane, and points s and t, let the geometric intersection
graph in the homology cover be denoted G. Then, there is an algorithm that computes a single-source
shortest-path tree within G in O(n log n) time.

Proof. By the method of de Berg and Cabello [dBC25a], it suffices to construct a clique-based
contraction of G with O(n log n) edges in the same time complexity, and give an algorithm for
static intersection detection in the same time complexity. In fact, Spalding-Jamieson and Naredla
already gave an algorithm for bichromatic intersection testing (“static intersection detection”) in
the homology cover with the required time complexity [SJN25b, Appendix C].

We now show how to compute the clique-based contraction. First, generate the clique-based
contraction of G, in which all the cliques are stabbed cliques. For a stabbed clique Q ⊂ C with
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stabbing point p, let p be the canonical point of all c ∈ Q for the purposes of labelling in the
homology cover. Then, to generate the cliques in G, we create two copies of each stabbed clique
Q, which we denote Q−1 and Q1, relative to the location of the stabbing point p.

It remains to compute the edges in the clique-based contraction of G. Let Q and R be cliques in
the clique-based contraction of G, and let b1, b2 ∈ {−1, 1} be indicator bits. Let the stabbing points
of Q and R be denoted pQ and pR, respectively. Let FQ, FR, FQb1 and FRb2 be the union of elements

in each clique (de Berg and Cabello call these flowers). Then, Qb1 and Rb2 intersect if and only
if there is some point p in the intersection of FQb1 and FRb2 so that the number of intersections of
the length-2 polyline pRppQ with the segment st is odd (if b1 ̸= b2) or even (if b1 = b2). Moreover,
we know that no disk contains s or t. Q and R intersect if one of two things occur: Either the
boundaries of Q and R intersect (in which case we need only consider crossing points p), or one is
contained in the other. In the latter case, we look at whether or not the segment pRpQ crosses the
segment st – no other path can have a different parity of crossings. For the former case: de Berg
and Cabello [dBC25a] actually iterate through all crossing points between the boundaries of FQ
and FR as part of their algorithm, so we simply check each one.

Line segments and constant complexity polylines Intersection graphs of line segments (and,
consequently, constant complexity polylines) in the plane are known to have small “biclique covers”:
A biclique cover of a graph G = (V,E) is a collection {(A1, B1), . . . , (Ak, Bk)} where each (Ai, Bi)
is a biclique – Ai, Bi ⊂ V and Ai×Bi ⊂ E – such that every edge e ∈ E is in at least one biclique
in S. The size of a biclique cover is the sum

∑
i [|Ai|+ |Bi|]. A geometric intersection graph

over n line segments (or, consequently, constant complexity polylines) in the plane have biclique

covers of size Õ(n
4
3 ), or Õ(n) if the segments are rectilinear [Cha23]. Moreover, these constructions

are also able to compute the covers in the same time complexity (up to poly-logarithmic factors).
Spalding-Jamieson and Naredla also observe that these constructions can be quite easily adapted
to line segments in the homology cover [SJN25a]. This mainly uses the fact that the intersection
of a line segment and a half-plane is another line segment (which does not apply for disks, hence
the method above).

A biclique cover can be thought of as a kind of exact sparsification of a graph. In particular,
given a biclique cover for a graph G of size K, single-source shortest-paths computations within G
can be reduced to single-source shortest-path computations within a directed graph G′ containing
O(K) vertices, even in the case that the vertices are given weights [SJN25a, SJN25b] (although we
are only interested in unweighted objects). The result is the following theorem:

Theorem 7.3. For a set C of line segments and/or constant complexity polylines, and a pair of
points s and t, let G be the corresponding intersection graph in the homology cover. Then, single-
source shortest-paths in G can be computed in Õ(n

4
3 ) time, or Õ(n) time if the segments/polylines

are rectilinear.

Rectilinear line segments and constant complexity rectilinear polylines For rectilinear
line segments in the plane, an even faster approach to single-source shortest path is known. In par-
ticular, Chan and Skrepetos [CS17, CS19] considered the decremental intersection detection
problem, in which a set of n objects is given, and then a sequence of O(n) queries/updates are
given, where each update deletes an object, and each query provides an object to test for intersec-
tion with any element of the set. If this problem can be solved in T (n) time for a class of objects,
then Chan and Skrepetos showed that a breadth-first search (i.e. an unweighted single-source
shortest-path computation) can be performed in a geometric intersection graph for the same class
of objects. As Chan and Skrepetos observe, for axis-aligned (rectilinear) segments, this problem
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can be reduced to decremental ray-shooting queries, and thus can be solved in O(n log n) time by
known results [GK07, GK09, Ble08]. Note that this also extends to rectilinear polylines of constant
complexity, since each polyline can be broken into its components. Using a straightforward method
of Spalding-Jamieson and Naredla, we can extend this result to the homology cover:

Theorem 7.4. For a set C of rectilinear line segments and/or constant complexity rectilinear
polylines, and a pair of points s and t, let G be the corresponding intersection graph in the homology
cover. Then, single-source shortest-paths in G can be computed in O(n log n) time.

Proof. It suffices to solve decremental intersection detection among line segments in the homology
cover. As Spalding-Jamieson and Naredla observe [SJN25b, Appendix C], intersection tests involv-
ing n line segments in the homology cover can be reduced into pairs of intersection tests involving
at most 2n line segments among two copies of the plane, so we can apply the method of Chan and
Skrepetos [CS17, CS19] in each copy of the plane.

7.1 Applications to Point-Separation Approximations

We briefly outline the derivations for the time complexities stated in Table 1. Each follows from
combining a result with each of Theorem 7.2, Theorem 7.3, and Theorem 7.4.

The first collection follows from combining with Theorem 4.1, the second with Theorem 5.1,
and the third with Theorem 6.1.

Note that, for the purposes of point-separation, any object defined by a closed curve not enclos-
ing s or t can be assumed to contain its interior without changing the size of the optimum solution.
Moreover, a convex polygon intersecting st can only enclose at most one of s or t (by Jordan curve
theorem and convexity), and we have assumed (algorithmically, at the start of Section 2) that no
single object separates s and t. Hence, we can assume that convex polygon objects are defined in
any of the following two ways, and the point-separation solutions will be equal:

• No convex polygon contains its interior.

• All convex polygons not containing s or t contain their interiors.

• Only convex polygons intersecting the segment st contain their interiors.

Notably, these are all more general than the case of all convex polygons containing their interiors,
since it allows for convex polygons that contain both s and t. This suffices for the convexity
requirements of Theorem 4.1 and Theorem 5.1.

8 Conclusion and Open Questions

In this paper we provided several new subquadratic approximation algorithms for the point-
separation problem with line segments, convex polygons, and disks. We gave two different ap-
proximation algorithms for the point-separation problem with convex objects, and one for more
general objects. These rely on efficient single-source shortest-path calculations in homology covers.

These results leave a number of open questions. Chief among these is understanding the cases
for which there are faster exact algorithms for the point-separation problem:

Open Question 8.1. Is there a natural (non-trivial) class of objects for which point-separation
can be solved exactly in truly subquadratic time?
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We use the term “non-trivial” since there are classes like non-crossing line segments (where the
problem simplifies to planar minimum (s, t)-cut) for which this is already known.

Next, although these approximation algorithms break the subquadratic barrier of previous meth-
ods, it seems like there is room for improvement. In particular, the parameterized approximation
scheme admits quasi-linear constant factor approximations, which offers hope that the polynomial
overhead for the additive approximation algorithm might be reduced:

Open Question 8.2. Are there approximation algorithms for the point-separation problem with
small additive error that run in quasi-linear time?

Additional useful possible improvements include the derandomization of both the additive ap-
proximation scheme and the SSSP:

Open Question 8.3. Can the additive approximation scheme of Theorem 4.1 be derandomized?

For our approximation schemes to run in subquadratic time, we currently need our shortest-
path queries to run in time O(n1.5−ε) for any constant ε. Thus new results in geometric intersection
graphs may also improve algorithms for point-separation.

Open Question 8.4. For what classes of objects can the single-source shortest-path problem
through the geometric intersection graph in the homology cover be solved in O(n1.5−ε) time, for
a constant ε > 0?

So far we have been able to extend prior algorithms from geometric intersection graphs in the
plane to those in the homology cover. For the most part, these extensions are fairly natural. This
brings up a natural question of whether these problems are algorithmically different for any types
of geometric intersection graphs:

Open Question 8.5. Are there any objects for which the computational complexity of finding the
single-source shortest path in geometric intersection graphs in the plane is different from that of
geometric intersection graphs in the homology cover?

As briefly mentioned in the introduction, Spalding-Jamieson and Naredla [SJN25a] gave the
first conditional lower bounds for point-separation with a number of classes of geometric ob-

jects [SJN25a]. In particular, they give an Ω
(
n

3
2
−ε

)
lower bound for (unweighted) line segments,

and one of their lower bounds could also be very slightly modified to become an Ω
(
n

3
2
−ε

)
lower

bound for axis-aligned rectangles. Their conditional lower bounds are for exact point-separation,
and do not seem to naturally extend to approximations. Hence, we ask if a comparable result is
possible:

Open Question 8.6. Are there any object types for which non-trivial fine-grained lower bounds
on approximating point-separation can be obtained?

Lastly, although Theorem 4.1 and Theorem 5.1 compute many shortest-paths, only some of
these computations need to explicitly produce the path. For the rest of them, only the length of
the path is required. Thus, if an exact distance-oracle for G could be computed efficiently, we could
speed up these algorithms:

Open Question 8.7. Are there any object types for which an exact distance-oracle of the inter-

section graph in the homology cover G can be computed in Õ
(
n

3
2

)
time?
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Note that an exact distance oracle that can be computed in O
(
n2−ε

)
-time would also provide

an improved algorithm for exact point-separation. Recently, Chan, Chang, Gao, Kisfaludi-Bak, Le,
and Zheng [CCG+25] have developed such an algorithm for unit disks in the plane, although it is
not yet clear if their algorithm could be modified to operate in the homology cover. Approximate
distance-oracles could also provide interesting results.
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Abstract—We study a special class of 2-face unfoldings
of the tesseract (4D hypercube) where we cut edges of
its 2-skeleton and lay down its 24 square faces on the
plane, forming a nonoverlapping polyomino. We explore the
family of 2-face unfoldings with the maximum diameter:
unfoldings whose dual graph is a path, commonly called
path unfoldings. We implemented an algorithm to test
whether a given 24-omino is a path unfolding of the 2-
skeleton of the hypercube. We used this software to design
a geometric font by selecting unfoldings that resemble
Latin letters and digits, illustrating the intersection of
computational geometry and typographic design.

Index Terms—unfolding, polyominoes, tesseract, font

I. INTRODUCTION

Unfolding polyhedra is an active area of research in
discrete and computational geometry [5]. In the most
famous edge-unfolding problem, the goal is to cut a
subset of the edges of the given polyhedron and unfold
the surface so that the faces remain connected and they
lie on the plane without overlap. A typical example is
the 11 edge unfoldings of the cube. We say that two
faces strongly overlap if their interiors overlap in the
unfolding. If two faces overlap only at the edges that
were cut, we say that they weakly overlap. In this project,
we allow unfoldings with weak overlaps.

We can generalize unfolding to higher-dimensional
polytopes. A natural way to generalize edge unfolding
is ridge unfolding: cut the (d − 2)-dimensional faces
(ridges) of a d-dimensional polytope and lay down the
(d − 1)-dimensional faces (facets) flat in the plane.
Turney [7] showed that there are exactly 261 different
(polycube) unfoldings of the tesseract (4D hypercube).
Diaz and O’Rourke [6] investigated the 2D (polyomino)

unfoldings of these 3D (polycube) unfoldings of the
tesseract. In these unfoldings, the same square face of the
tesseract appears either twice in the polyomino unfolding
or not at all depending on whether or not they are in the
surface of the polycube unfolding.

Recently, Akitaya and Kandarpa [2] defined an alter-
native definition that unfolds a d-dimensional polytope
to 2D directly, called “2-face unfoldings”. The 2-skeleton
is the shape that we get from the 2D faces of the
polytope, gluing them together at their shared edges.
A 2-face unfolding cuts some of these shared edges in
such a way that the 2-skeleton unfolds to a connected
nonoverlapping 2D polyomino. For a tesseract, all 24
square faces appear exactly once, so we get a 24-omino.
Akitaya and Kandarpa used this approach to list a family
of such unfoldings of the tesseract via a brute-force
algorithm. However, their approach could not list 2-face
unfoldings whose dual graph has a large diameter.

In this paper, we focus on 2-face unfoldings that are
path unfoldings where the dual graph forms a Hamilto-
nian path on the square faces of the tesseract. These dual
graphs have the maximum possible diameter, placing us
at the opposite extreme of Akitaya and Kandarpa [2].
The number of 2-face path unfoldings is likely very
large; ignoring overlap, the number of Hamiltonian paths
in the 2-face adjacency graph is over 16 trillion. In
Section II, we show some structural properties of such
unfoldings.

To go beyond alternating unfoldings, we also imple-
mented an algorithm to check whether a given 24-omino
is a 2-face path unfolding of the tesseract. In Section III,
we describe this algorithm as well as the design of a font



of 36 2-face path unfoldings that look like the letters A–
Z and digits 0–9.

II. TESSERACT AND ITS UNFOLDINGS

The d-cube is a d-dimensional hypercube. Consider
the projection of the 4-cube shown in Figure 1. The
tesseract has eight 3D cube faces, which consist of
four opposite pairs that share no square face. We
pick one such opposite pair and call them the top
and bottom cubes. Call ABCDabcd the top cube
and EFGHefgh the bottom cube. Twelve faces (2-
cubes) ADHE,CDHG,BCGF,ABFE, adhe, cdhg,
bcgf, abfe,AaeE,DdhH,CcgG,BbfF are not part of
the top or bottom cubes, so they form a cut between
these cubes; we call them side faces.

A

D

E

H G

F

a
d

e f
gh

c
b

B

C

Fig. 1: Naming convention for the vertices of a tesseract
(4D hypercube).

The dual graph of the 4-cube as is face adjacency
graph, i.e., its vertices are the 2D faces of the 4-cube,
and two faces are adjacent if they share a 1D edge.
Given a Hamiltonian path P of the dual graph of the
4-cube, the side faces induce a set of subpaths. We call
each of these subpaths a traversal of the side faces. If
there are m such subpaths, we say that P traverses the
side faces m times. We use a similar definition for the
top and bottom cubes. In previous work, a subset of
the authors experimentally enumerated all 35,520 2-face
path unfoldings in the subclass of path unfoldings that
alternate between visiting faces of the top and bottom
cubes (six times each), with a visit to a single side face
in between. We call this class the alternating 2-face path
unfoldings of the tesseract.

III. CHECKING PATH UNFOLDINGS AND
TESSERACT FONT

To illustrate the breadth of path 2-face unfoldings of
the tesseract, we designed a font of 36 such unfoldings
that look like each letter A–Z and digit 0–9. Although
we have enumerated the tens of thousands alternating
path 2-face unfoldings, it is also difficult to sift through

them all, and we still have not generated all path 2-
face unfoldings. Thus we implemented an algorithm
to check whether a given 24-omino is a path 2-face
unfolding of the tesseract. This algorithm uses recursion
and backtracking, trying to find Hamiltonian a path in
the dual of the given polyomino while simultaneously
walking on the face-adjacency graph of the tesseract.
Then we used SVG Painter [4] to hand-draw possible
unfoldings in the shape of a desired symbol, input the
resulting SVG into our program to check whether it is
a valid path unfolding, and repeated until we found a
good-looking unfolding.

Figure 2 shows the resulting font. Can you figure
out how to fold each unfolding into the 2-faces of the
tesseract? We encourage the reader to try this puzzle
before looking at the labels in Figure 3.

IV. FUTURE WORK

Our objective is to enumerate all path 2-face unfold-
ings of the tesseract, extending beyond the alternating
case. To achieve this, we plan to use Zero-suppressed
Decision Diagrams (ZDDs), a method previously em-
ployed to enumerate non-overlapping edge unfoldings of
polyhedra [3]. In addition to this enumeration, we aim to
construct a new FONT based on general edge unfoldings
of the tesseract, which may yield Latin letters with more
visually appealing forms.

V. CODE AVAILABILITY

All code from this project can be found at https://
github.com/Soham2020sam/PathUnfoldingsTesseract.
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(a) A–Z

(b) 0–9

Fig. 2: Tesseract font. Each letter/digit is represented by
a path 2-face unfolding of the tesseract.
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Fig. 3: Tesseract font with labels indicating vertices.
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Abstract
Persistence Landmarks are explicit geometrically motivated 1-Lipschitz maps from the space of persistence

diagrams onn points (equipped with the Bottleneck distance) into Hilbert space, with quantified lower bounds
on distortion. Such embeddings allow us to control the amount of geometric information lost due to their use
as a topological summary. Since our summary lies in Hilbert space, it is easily adaptable to tools in statistics
and machine learning. Viewed as a Hilbert space valued random variable, this summary obeys a strong law
of large numbers and a central limit theorem, and standard statistical tests can be used for hypothesis testing
using this summary.

1 Introduction
Motivation. The applications of persistent homology have been burdened with the difficulty of combining its
main signature—persistence diagrams—with statistics and machine learning. While persistent homology as a
construction is backed by a strong theoretical background (such as stability theorems) and practical applications
in the context of data science, one of the major disadvantages to an even more widespread application is the fact
that the persistence diagrams—the natural outputs of persistent homology computations—are not subsets of a
Hilbert space. This is problematic since the approaches of statistics and general data analysis typically require
the structure of a finite-dimensional vector space or a Hilbert space in order to apply the corresponding standard
tools. As a result, there have been multiple approaches to mapping the space of persistence diagrams into a
Hilbert space or a finite-dimensional Euclidean space, for example: the influential work on Fréchet means of
distributions of persistence diagrams in [12], and subsequently [11], [1], [4]. For a comparative review of some
of these approaches, see [3] and [2].

These approaches are typically Lipschitz maps from the space of persistence diagrams to Hilbert or Euclidean
space. More specifically, if f is such amap, thend(f(A), f(B)) ≤ L·dB(A,B)whered is the standard Euclidean or
ℓ2 distance, L > 0, and dB is the bottleneck distance between persistence diagrams A and B. On the other hand,
while many of these approaches construct an injective map f, there has been a notable absence of quantified
distortion with respect to the Bottleneck distance, i.e., a map ψ implying d(f(A), f(B)) ≥ ψ(dB(A,B)). The
absence of a lower bound on distortion meant that we have no control over the amount of information lost
through f. In particular, none of the mentioned approaches explains how to distinguish the images of persistence
diagrams with the Bottleneck distance to at least a chosen threshold. Putting it differently, there was no proven
control on the discriminative properties of the mentioned approaches.

The first such lower bound was established by the third and fourth named authors, who showed the existence
of a cover-based embedding coordinatized by landmarks into the Hilbert space of the space of persistence
diagramsDn on n points (with the bottleneck distance) [7]. In a subsequent paper [8], the authors extended this
existence result to all scales and constructed explicit maps and explicit distortion functions. We call this embed-
ding a persistence landmark. The present work shows an actual implementation of the landmark embedding
and does a statistical analysis—as described below.
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Statistical Analysis. The above-mentioned cover-based embedding (persistence landmark) should satisfy the
following desirable properties (compare with [4]): Considering the data to be sampled from some underlying
abstract probability space, and applying the above-mentioned constructions, we can consider our topological
summary (as defined by the embedding into Hilbert or Euclidean space) to be a random variable with values in
some summary space S . Let X1, · · · .Xn be a sample of independent random variables with the same distribution
as X. We would like to describe a notion of the mean µ of X and the mean Xn of the sample, and show that
Xn converges to µ. We would like to have quantified Xn − µ, and be able to estimate the confidence intervals
related to µ. Moreover, given two such samples for random variables X and Y with values in our summary space,
we would like to be able to test the hypothesis that µX = µY . In this project, we show that the cover-based
persistence landmark embedding achieves these desired properties.
2 Preliminaries
This section provides some preliminary notation and definitions used throughout the paper.

Metric Geometry. The following definitions summarize the various concepts of embeddings that we use.
Let f : X→ Y be a function between metric spaces.

1. f is said to be Lipschitz if there isΛ > 0 such that dY(f(x1), f(x2)) ≤ Λ ·dX(x1, x2). We occasionally call
such a map Λ-Lipschitz.

2. f is said to be a coarse embedding if there are non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞) with
ρ−(dX(x1, x2)) ≤ dY(f(x1), f(x2)) ≤ ρ+(dX(x1, x2)) and with limt→∞ ρ−(t) = ∞.

3. A coarse embedding f is said to be a quasi-isometric embedding if the functions ρ−,+ are linear.

4. A quasi-isometric embedding is said to be a bi-Lipschitz embedding if the functions ρ−,+ are dilations; In
particular, ρ−(t) = a · t and ρ+(t) = b · t, where a, b > 0.

5. f is said to be a uniform embedding if there are non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞)
with ρ−(dX(x1, x2)) ≤ dY(f(x1), f(x2)) ≤ ρ+(dX(x1, x2)), with limt→0+ ρ+(t) = 0 and with ρ−(t) > 0
whenever t > 0 .

Persistence Diagrams. In this subsection, we recall the structure of the space of persistence diagrams. We
take a slightly non-standard approach (for more details see [7], [8]). D1 represents the space of persistence
diagrams on 1 point. As a set it equals D1 = T ∪ {∆} where T = {(x1, x2) ∈ R2 | x2 > x1 ≥ 0}, while
∆ is an additional point representing the diagonal {(x, x) ∈ R2 | x ≥ 0}. On the space D1 we define the
Bottleneck distance dB as the minimum of two terms. The first term is the d∞ distance between the points
and corresponds to the matching between the points in the standard definition of the bottleneck metric. The
second term corresponds to the matching of both points to the diagonal ∆.

Now we fix n ∈ {1, 2, . . .}. To define a metric on the space of persistence diagrams on n points, we define
the usual max metric dnB on the product space (Dn1 , dnB).

The symmetric group on n elements, Sn, acts on (Dn1 , dnB) by permutations of coordinates. The space of
persistence diagrams on n points, (Dn, dB), is the quotient (Dn1 , dnB)/Sn:

1. Elements ofDn are orbits of the Sn action onDn1 . In particular, elements ofDn aren-tuples [x̄1, x̄2, . . . , x̄n]
with identifications [x̄1, x̄2, . . . , x̄n] = [ȳ1, ȳ2, . . . , ȳn] iff ∃ψ ∈ Sn : x̄i = ȳψ(i), ∀i. We will often think of
persistence diagrams as multisets, i.e., collections of n points from D1 with potential repetitions.

2. The metric dB is defined as the usual quotient metric.
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3 Notes on the Embedding
The Main Construction. The persistence landmark-based embedding is constructed in two stages. First,
the embedding is constructed at one scale, on the space D1, and then assembled into a map to Hilbert space.
Subsequently, this construction is extended to Dn. As the details of this stage-wise construction are substantial,
we omit those details and refer the reader to [8] for a comprehensive explanation.

Example Implementation: Maps to Euclidean Space for Bounded Domains. Given a set of persistence
diagrams onn points such that the points are enclosed in a bounded domain and the embedding needs a specified
scale of discrimination, we can adjust the embedding constructed in the earlier sections to an explicit quasi-
isometric 1-Lipschitz embedding to a Euclidean space of a specific dimension. Suppose the given collection of
persistence diagrams consists of points that have coordinates in [0,M], and that the resolution required ism (i.e.,
we do not need to distinguish between coordinates of persistence diagrams that are less thanm distance apart).
We choose an appropriate finite set of scales {R1, · · · , RN} and corresponding weights {w1, · · · , wN} - with the
values (to be determined later). This gives an embedding φ3 : Dn → RN defined as φ3 = (wkφRk), which is
Lipschitz and whose distortion is explicitly determined by the choice of the set of scales and weights.

Let L > 0 denote the frame size, let 0 < R1 < R2 < . . . < RN ≤ L be a chosen sequence of scales, and assume
w̄ = (w1, . . . , wN) is a unit vector of weights corresponding to the chosen scales. For each i let νi denote the
number of elements of the cover RiV intersecting Dn ∩ [0, L]2. Then the map φ3 : Dn ∩ [0, L]2 → Rν1+ν2+...+νN
defined as

φ3(x) = (wk2
−nφRk(x))

N
k=1

is 1-Lipschitz and satisfies the following: if dB(x, y) ≥ Ri, then ∥φ3(x) −φ3(y)∥ ≥ 1
3·2n+2.5

√∑i
k=1wk

2Rk
2.

Moreover, in such a case, we have an explicit linear lower bound as follows:

ρ−(t) =

[
1

3·2n+2.5 min
{

min
2≤i≤N

{√∑i−1
k=1wk

2Rk
2

Ri−R1

}
,

√∑N−1
k=1 wk

2Rk
2+w2

NL
2

L−R1

}]
(t− R1) (3.1)

when t > R1, and ρ−(t) = 0 when 0 ≤ t ≤ R1.

Implementation of the Embedding. The Persistence Landmark-based embedding has been implemented in
Python.

Adjusting the landmarks and grid to improve the embedding. Adjusting the landmark locations and size
and shape of the grid, we have control over the distortion of the embedding.
4 Statistical Analysis of Persistence Landmarks
Following [4], we now consider a statistical analysis of the embedding in the face of a random sample from a
topological space.

Let (Ω,F , P) be a probability space. Let X be a random variable onΩ, with persistence landmark Ψ, a Borel
random variable with values in ℓ2. In other words, for any ω ∈ Ω, X(ω) denotes a realization of point cloud
data and Ψ(X(ω)) is the corresponding Hilbert space embedding of the persistence diagram of X(ω).

Now let X1, . . . , Xn be i.i.d. copies of X, and let Ψ1, . . . , Ψn be the corresponding persistence landmark
embedding. Their mean in ℓ2 is denoted by Ψn. We would like to be able to say that the mean converges to the
expected persistence landmark.

Convergence of Persistence Landmarks. We now state the convergence results.

Theorem 1 (Strong Law of Large Numbers for persistence embeddings). Ψn → E(Ψ) almost surely if and only
if E∥Ψ∥ <∞.

landmarks
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Proof. Apply the Central Limit Theorem[6] to Ψ(X) − E(Ψ(X)).

Next, we apply a functional to the persistence summaries to obtain a real-valued random variable that satisfies
the usual central limit theorem.

Corollary 2. Assume E∥Ψ∥ <∞ and E(∥Ψ∥2) <∞. Let

Y = ∥Ψ∥22. (4.1)

Let Ȳn be the mean of ∥Ψ1∥22, ∥Ψ2∥22, . . . , ∥Ψn∥22. Then
√
n[Y

n
− E(Y)]

d−→ N(0,Var(Y)). (4.2)

where d−→ denotes convergence in distribution andN(µ, σ2) is the normal distribution with mean µ and variance σ2.

Confidence Intervals. Now, we obtain approximate confidence intervals for the expected values Y.
Assume that Ψ(X) satisfies the conditions of Corollary 2 and that Y is a corresponding real random variable

as defined in (4.1). By Corollary 2 and Slutsky’s theorem, we may use the normal distribution to obtain the
approximate (1− α) confidence interval for E(Y) using

Y
n ± z∗ Sn√

n
,

where S2n = 1
n−1

∑n
i=1(Yi − Y

n
)2, and z∗ is the upper α2 critical value for the normal distribution.

Additionally, since Ψ is a Hilbert space-valued random variable, following [10] and [5], we can construct a
confidence region for the mean persistence summary E(Ψ) using a bootstrap approach.

Hypothesis Testing. Here, we apply the above results to hypothesis testing.
Let X1, . . . , Xn be iid copies of the random variable X and let X ′

1, . . . , X
′
n ′ be iid copies of the random variable

X ′. Assume that the corresponding persistence summaries Ψ,Ψ ′ lie in ℓ2. Let Y and Y ′ be defined as in (4.1). Let
µ = E(Y) and µ ′ = E(Y ′). We will test the null hypothesis that µ = µ ′.

As the samplemean Y = 1
n

∑n
i=1 Yi is an unbiased estimator ofµ and the sample variance s2Y = 1

n−1

∑n
i=1(Yi−

Y)2 is an unbiased estimator of Var(Y) and similarly for Y ′ and s2Y ′ , by Corollary 2, Y and Y ′ are asymptotically
normal.

We use the two-sample z-test. Let

z =
Y − Y

′
√

S2Y
n +

S2
Y ′
n ′

,

where the denominator is the standard error for the difference.
To compare the expectation of the persistence summaries, Hotelling’s T 2 test can be used following [9].

Additionally, a permutation test can be used to compute p-values similar to [4].
5 Discussions
The nature of our work is ongoing. Using the persistence landmark cover-based embedding, we can vectorize
persistence diagrams to use them for downstream machine learning tasks. Our goal is to conduct comprehensive
experiments on benchmark ML datasets to compare the accuracy and computational efficiency achieved by al-
ternative summaries, e.g., Persistence Landscapes and Persistence Images, etc. [2], [3]. Moreover, given any set
of persistence diagrams arising from practical data sets, we want to create a pipeline for “learning” an optimal
persistence landmark embedding by appropriate choices of landmark locations, shape, and scales of the cover
elements, and weights; for example, in the bounded domain persistence landmark embedding 3.1.
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Abstract

The complexity and performance of neural networks is deeply connected to the topology of the input data.
We propose a novel Divide-and-Conquer (DC) classification framework that simplifies the data’s topology
before learning. Our method leverages the Ham Sandwich Theorem to partition the dataset into balanced
subsets. For the general case where such partitions are not unique, we introduce a selection criterion that
minimizes a total persistence measure based on persistent homology. Simpler models are then trained on each
topologically simplified subset. As a preliminary study, we show that even in 2D, where the cut is unique,
this principled geometric partition simplifies topology and improves accuracy. Experiments on synthetic
datasets show that our topology-aware decomposition allows simple networks to achieve higher classification
accuracy than when trained on the full, complex dataset. This highlights the potential of using geometric
data partitioning as a pre-processing step for complex learning tasks.

Introduction

The main premise of Topological Data Analysis (TDA) is that data often possesses a rich geometric and topolog-
ical structure. Recent work in machine learning has shown that this structure is not just a novelty but a critical
factor in model performance. The topology of data simplifies as it passes through a neural network’s layers [8],
and a network’s ability to learn is fundamentally linked to the topological complexity of its input [4]. Highly
complex data requires deeper networks, suggesting data topology is a significant bottleneck for efficient learning.

The Divide-and-Conquer (DC) paradigm, where a problem is broken into smaller sub-problems, is a technique
in machine learning [9]. However, existing DC approaches typically partition the input space without considering
the data’s underlying topology. A random cut is unlikely to simplify the problem and may worsen it by reducing
the training data for each sub-model.

In this paper, we bridge this gap by introducing a topology-aware DC framework. We propose to simplify
the learning problem by first partitioning the data into topologically simpler subsets using principled geometric
cuts. This is achieved by:

1. Using the Ham Sandwich Theorem (HST) to generate balanced partitions of the data classes.

2. When the cut is not unique (e.g., binary classification in d > 2), selecting the optimal partition by mini-
mizing a total persistence cost function.

The classical HST guarantees a unique balanced cut when the number of classes equals the ambient dimension
(d sets in Rd). However, in our setting (binary classification in Rd), the cut is unique only in 2D. In higher
dimensions (d > 2), the bisecting hyperplane is not unique, and the set of all such cuts forms a manifold [6]. Our
cost function allows us to search this manifold for the cut that maximally simplifies the topology.

Our experiments serve as a preliminary validation of this concept. We show that even in 2D, where the cut is
unique, this single, principled geometric partition successfully simplifies the data’s topology (by breaking cycles)
and leads to improved classification accuracy. This provides strong evidence for the general method of using
topological optimization to select cuts in higher dimensions.

Background on Mass Partitions

Mass partition problems describe the partitions we can induce on a family of measures or finite sets of points in
Euclidean spaces by dividing the ambient space into pieces. One of the most famous result in this area is the
Ham-Sandwich theorem alongside its discrete version:

Theorem 1 (Discrete Ham Sandwich Theorem). Let X1, ..., Xd be finite sets in Rd. Then there exists a hyper-
plane that simultaneously bisects X1, ..., Xd.
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There exists efficient algorithms for finding such hyperplanes in practice, e.g. when d = 2 there exists an
algorithm that runs in O(n) time, where n is the total number of points, and in general, the problem can be
solved in O(nd−1−α(d)) time, where α(d) > 0 and goes to zero as d increases [5].

Background on Persistent Homology

To measure the topological complexity, we use persistent homology (PH) [2]. PH tracks the evolution of topo-
logical features (connected components, loops, voids) over a sequence of growing simplicial complexes, known as
a filtration. The result is a persistence diagram [3], a multiset of (birth, death) points summarizing the lifespan
of each feature. In this work, we use the Vietoris-Rips (VR) filtration.

Proposed Method: Data Partitioning

We focus on the binary classification of a dataset D ⊂ Rd with classes C0 and C1 that exhibit non-trivial topology.
Our goal is to find a partition of D into subsets {Di} such that their total topological complexity is lower than
that of the original dataset.

As a measure of this complexity, we use the 1D Total Persistence, which is often used in TDA-based ML
applications [8]. We define (following the notation from [8]) it as:

TC(Di) =
∑

points in PD1(Di)

(death− birth),

where PD1(Di) is the persistence diagram of the first homology group of a subset Di. We expect that for
a “good” partition, the total persistence

∑
iTC(Di) will be lower than TC(D). We focus on PD1 as we are

interested in simplifying loop-like features, which are the dominant complex structures in our test data.

(a) The partitioning of the dataset D into two subsets.
The cut simplifies the topology by breaking the cycles.

(b) Decision boundaries. Left: Baseline FCNN fails.
Right: Our 1-Split DC method succeeds.

Figure 1: Illustration of our method on the Circles dataset. (a) A Ham Sandwich cut partitions the data,
simplifying its topology. (b) This allows a simple classifier to learn the decision boundary.

Finding the Optimal Hyperplane

As established in the introduction, for binary classification in d > 2, the Ham Sandwich cut is not unique; the
set of all such cuts forms a manifold [6]. This non-uniqueness is the key to our method, as it allows us to search
for an optimal partition.

Our proposal is to find the hyperplane h that minimizes the total persistence of the resulting subsets:

min
h

(TC(D0) + TC(D1))

This optimization problem can be approached in several ways (e.g., via functional methods or different parametriza-
tions of the cut manifold). In this preliminary work, we use a practical, iterative search method based on random
projections, which is detailed in the Experiments section.

Computational Complexity

The cost of our method is a one-time pre-processing step to find the optimal cut. This is the main computational
bottleneck. We must compute PD1 for two subsets of size ≈ n/2. The complexity is determined by the size
of the VR filtration. Constructing the 2-skeleton (up to triangles) can take O(n3) time in the worst case. The
subsequent matrix reduction algorithm for PH is O(m3) where m is the number of simplices. While worst-case
complexity is high, modern implementations like Ripser [1] often exhibit near-linear empirical performance for
low-dimensional homology.

This pre-processing cost must be weighed against the potential savings from training simpler, smaller neural
networks.
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Figure 2: The synthetic datasets CurvesOnTorus (left) and Moons (right) used in the experiments.

Experiments

We evaluate our topology-aware DC approach on synthetic datasets against baseline fully-connected neural
networks (FCNNs). We intentionally use simple network architectures to demonstrate that our method simplifies
the problem to a degree that even these basic models can achieve high accuracy, whereas they fail on the original,
complex data.

Experimental Setup

In our preliminary study, we split the dataset only once, training two smaller FCNNs on the resulting chunks of
labeled data. Our method (DC (Ours)) finds its partition as follows:

1. A candidate hyperplane is generated by first projecting the high-dimensional data onto a random 2D plane.

2. The standard 2D Ham Sandwich cut is computed on the projected data.

3. This cut is lifted back to a separating hyperplane in the original space, partitioning the dataset.

4. The total persistence (TC) of this partition is calculated.

This process is repeated (N = 100 trials), and we select the hyperplane that yields the minimum total per-
sistence as the final partition.

The Baseline FCNN is trained on the full, unpartitioned dataset. Both DC and Baseline models use the same
architectures for a fair comparison, as specified by (Depth, Width) in Table 1. All models were implemented in
PyTorch and trained using the Adam optimizer. We used Ripser for persistence computations. Models were
trained for 250 epochs with a batch size of 32, and a learning rate of 1e-3.

Datasets

We used the following synthetic datasets:

• Curves on Torus Dataset: 3000 points sampled from two closed curves on a torus T 2 ⊂ R3. The
topological invariant (number of revolutions) serves as the complexity characteristic.

• Moons Dataset: 2000 points sampled from two interleaving half-circles in R2.

Results and Discussion

Table 1 summarizes the test accuracy. On the Moons dataset (Table 1a), our method achieves near-perfect
accuracy (99.73%) with a minimal (1, 2) network, demonstrating the effectiveness of the partition. The advantage
is more pronounced on the CurvesOnTorus dataset (Table 1b), which has a more complex topology (β1 = 2).
Here, our approach reaches 96.32% accuracy with a (2, 5) configuration, significantly outperforming the baseline’s
89.91%. These results show that by simplifying the data’s topology first, our method enables simpler networks
to solve complex classification problems more effectively.

Discussion. The results suggest that our topology-aware decomposition acts as a form of problem simplifica-
tion. By partitioning the data space into topologically simpler subsets, we effectively ”linearize” the learning task
for the local models. This allows simple FCNNs to learn effective decision boundaries without needing the high
capacity (and large amounts of data) that a single, large model would require to learn the original, complex data
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Table 1: Test accuracy on all synthetic datasets (mean ± std over 10 seeds). Our topology-aware DC method
consistently outperforms the baseline FCNN, especially on topologically complex data.

(a) Moons

Method Config (Depth, Width) Acc. (%)

DC (Ours) (1, 2) 99.73 ±0.001

DC (Ours) (1, 3) 99.67 ±0.002

DC (Ours) (2, 2) 99.66 ±0.001

Baseline (1, 2) 88.13 ±0.005

Baseline (2, 2) 89.54 ±0.038

Baseline (1, 3) 96.77 ±0.001

(b) CurvesOnTorus

Method Config (Depth, Width) Acc. (%)

DC (Ours) (1, 3) 73.86 ±0.068

DC (Ours) (2, 3) 82.04 ±0.081

DC (Ours) (2, 5) 96.32 ±0.032

Baseline (1, 3) 71.00 ±0.028

Baseline (2, 3) 68.31 ±0.075

Baseline (2, 5) 89.91 ±0.085

structure. Our method’s strength lies in its ability to find a partition that is not just balanced, but genuinely
beneficial for the learning algorithm.

However, the method has limitations. The computational cost of the search procedure makes it a heavy
pre-processing step. We also acknowledge that our experiments are limited to a single cut and synthetic datasets.
Future work will explore several promising directions. Firstly, we will extend this framework to multi-class
problems and test its generalizability on real-world data. Secondly, instead of using only the standard Ham
Sandwich theorem to generate candidate partitions, one could investigate more constrained, canonical cuts.
There exist powerful extensions that guarantee additional geometric properties, for instance:

Theorem 2 ([7]). Let X1, ..., Xd be finite sets in R2d. Then there exists a hyperplane which passes through the
centers of mass X1, ..., Xd and simultaneously bisects each of these sets.

Theorem 3 ([7]). Let X be a finite set in Rd. Then there exist d mutually orthogonal hyperplanes such that
every pair of these hyperplanes divides X into four parts of equal parts.

Investigating whether the additional structure imposed by such cuts (e.g., passing through centers of mass
or ensuring orthogonality) provides an advantage when optimized with our topological cost function is a key
research question.
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Abstract

The shadow of an abstract simplicial complex K with vertices in RN is a subset of RN defined as the union of
the convex hulls of simplices of K. The Vietoris–Rips complex of a metric space (S, d) at scale β is an abstract
simplicial complex whose each k-simplex corresponds to (k + 1) points of S within diameter β. In case S ⊂ R2

and d(a, b) = ∥a − b∥ the standard Euclidean metric, the natural shadow projection of the Vietoris–Rips complex is
already proved by Chambers et al. to induce isomorphisms on π0 and π1. We extend the result beyond the standard
Euclidean distance on S ⊂ RN to a family of path-based metrics, dεS . From the pairwise Euclidean distances of points
in S, we introduce a family (parametrized by ε) of path-based Vietoris–Rips complexes Rε

β(S) for a scale β > 0.
If S ⊂ R2 is Hausdorff-close to a planar Euclidean graph G, we provide quantitative bounds on scales β, ε for the
shadow projection map of the Vietoris–Rips complex of (S, dεS) at scale β to induce π1-isomorphism. This paper first
studies the homotopy-type recovery of G ⊂ RN using the abstract Vietoris–Rips complex of a Hausdorff-close sample
S under the dεS metric. Then, our result on the π1-isomorphism induced by the shadow projection lends itself to
providing also a geometrically close embedding for the reconstruction. Based on the length of the shortest loop and
large-scale distortion of the embedding of G, we quantify the choice of a suitable sample density ε and a scale β at
which the shadow of Rε

β(S) is homotopy-equivalent and Hausdorff-close to G.

1 Introduction

Given a metric space (S, dS) and scale β > 0, the Vietoris–Rips complex, denoted Rβ(S), is defined as an abstract
simplicial complex having a k-simplex for every subset of S with cardinality (k+ 1) and diameter less than β. In the
last decade, Vietoris–Rips complexes have gained considerable attention in the topological data analysis community
due to their relatively straightforward computational schemes regardless of the dimension of the data, compared to
some of the alternatives such as Čech and α-complexes. The theoretical understanding of the topology of Vietoris–
Rips complexes at different scales is generally extremely elusive. Nonetheless, the far and wide use of Vietoris–Rips
complexes—particularly in the field of shape reconstruction—can be attributed to their ability to reconstruct the
topology of a hidden shape X even when constructed on a noisy sample S “around” X ; [9, 3, 10, 14, 15, 12].

There are many real-world applications where the unknown shape X and the sample S are hosted in a Euclidean
space RN within a small Hausdorff proximity. In case X belongs to a nice enough class of shapes, the Vietoris–Rips
complex of S (possibly under a non-Euclidean metric) has been shown to successfully reconstruct X up to homotopy-
type; pivotal developments include [3, 10] for compact subsets of positive reach, [14] for Euclidean submanifolds,
[14] for Euclidean graphs, [12] for more general geodesic subspaces of curvature bounded above.

This paper is devoted to Euclidean graph reconstruction—both topologically and geometrically. Graph structures
are ubiquitous in real-world applications. In practice, Euclidean data or sample S ⊂ RN sometimes approximate
an (unknown) graph G that is realized as a subset of the same Euclidean space RN with a controlled Hausdorff
distance dH(S,G). Despite the prevalence of graph structures to be recovered from noisy samples, the theoretical
challenges ensuing from their vanishing reach (and µ-reach [5]) make most of the existing results for nice enough
spaces untenable for geometric graphs.

Topological Reconstruction Our study of the topological reconstruction of Euclidean graphs via Vietoris–Rips
complexes of the sample is inspired by the recent developments in the reconstruction of graphs [14] and general
geodesic subspaces [12], using a non-Euclidean, path-based metric for the output Vietoris–Rips complexes. The
sample S comes equipped with the Euclidean distance between pairs of points. Even when such a sample exhibits
a sufficiently small Hausdorff–closeness to G, the Euclidean Vietoris–Rips complex generally fails to be homotopy
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equivalent to the underlying graph. Near the vertices of G, the presence of small redundant cycles in the Euclidean
Vietoris–Rips complex of S is often unavoidable; see Figure 2.

For this reason, the Euclidean metric on S is not deemed an appropriate metric for building the Vietoris–Rips
complexes on S to obtain a topologically faithful reconstruction of the unknown graph. Instead, the authors of [8,
14, 12] considered the Vietoris–Rips complexes of the sample under a family of path-based metrics (S, dεS) ([11,
Definition 2.6]) in their reconstruction schemes. Under this metric, for sufficiently small scale β, we show that the
Vietoris–Rips complex Rε

β(S) is homotopy equivalent to G.
Our topological reconstruction extends and improves the above-mentioned works in the following directions. Al-

though the authors of [8, 14] considered embedded graph reconstruction in a similar setting, a noteworthy limitation
was the use of the global distortion of G, which is known to become infinite in the presence of the cusp-like structures
in G. We successfully mitigate the caveat by putting forward the large-scale distortion ([11, Definition 2.8]) as a more
robust, alternative sampling parameter in our reconstruction scheme. In addition, our proof techniques are much
simpler than [14], with reconstruction guarantees under much weaker sampling conditions. We also mention that
the large-scale distortion was introduced in [12] for the reconstruction of spaces more general than Euclidean graphs.
However, we present a more direct proof, which avoids using their two main ingredients—Hausmann’s theorem [9]
and Jung’s theorem [13]—resulting in a much weaker sampling condition in the special case of graphs.

Based on the length ℓ(G) of the shortest loop and large-scale distortion δεβ(G) of the embedding of G, we show
how to choose a suitable density parameter ε and a scale β such that Rε

β(S) is homotopy-equivalent to G. For a
proof, see [11, Theorem 3.1].

Theorem 1.1 (Topological Reconstruction). Let G ⊂ RN be a compact, connected metric graph. Fix any ξ ∈
(
0, 1

4

)
.

For any positive β < ℓ(G)
4

, choose a positive ε ≤ β
3

such that δεβ(G) ≤ 1+2ξ
1+ξ

. If S ⊂ RN is such that dH(G,S) < 1
2
ξε,

then we have a homotopy equivalence Rε
β(S) ≃ G.

Geometric Reconstruction Topologically faithful reconstructions are only useful to estimate the homological features—
such as the Betti numbers, Euler characteristic, etc—of the hidden shape X . A more challenging yet more useful
paradigm is geometric reconstruction: to output a subset X̃ in the same host Euclidean space RN computed from S
such that X̃ is not only homotopy equivalent but also Hausdorff-close to X .

Despite aiding in homotopy equivalent reconstruction, as an abstract simplicial complex, Vietoris–Rips complexes
fail to provide an embedding in the same host Euclidean space. For a geometric reconstruction of Euclidean shapes,
it’s most natural to consider the shadow of the Vietoris–Rips complexes. The shadow of an abstract simplicial complex
K with vertices in RN is a subset of RN defined as the union of the convex hulls of simplices of K; see Definition 2.1
for more details.

The shadow of a general simplicial complex with Euclidean vertices is notorious for being topologically unfaithful.
However, when considering the Vietoris–Rips complex of a finite points in R2 under the Euclidean metric, the shadow
project map has been shown in [4] to induce isomorphisms on both π0 and π1. Furthermore, the authors show that
the projection map fails to induce surjection on π1 for any N ≥ 4 and fails to induce an injective homomorphism on
πk for any N ≥ 2 and k ≥ 2. The curious case of N = 3 was later partially resolved in [1] by proving that the shadow
projection induces a surjection on π1.

In this paper, we consider the Vietoris–Rips complexes of a sample S ⊂ R2, constructed under a (possibly non-
Euclidean) family (parametrized by ε) of path-based metrics dεS on S. The phenomenal utility of such path-based
metrics has recently been demonstrated by the authors of [8, 14, 12] in the context of shape reconstruction beyond
smooth submanifolds. If S is Hausdorff-close to a Euclidean graph G, we provide quantitative bounds on scales β, ε
for the shadow projection map of the Vietoris–Rips of (S, dεS) at scale β to induce π1-isomorphism. This leads to
the following pragmatic geometric reconstruction scheme using the quantity Θ ([11, Eq. 9]) and the shadow radius
∆(G) of G as introduced in [11, Definition 5.1].

Theorem 1.2 (Geometric Reconstruction). Let G ⊂ R2 a graph having properties [A1–A4] from 3.1. Fix any ξ ∈(
0, 1−Θ

6

)
. For any positive β < min

{
∆(G), ℓ(G)

18

}
, choose a positive ε ≤ (1−Θ)(1−Θ−6ξ)

12
β such that δεβ(G) ≤ 1+2ξ

1+ξ
. If

S ⊂ R2 is such that dH(G,S) < 1
2
ξε, then the shadow S(Rε

β(S)) is homotopy equivalent to G. Moreover, dH(S(Rε
β(S)),G) <(

β+ 1
2
ξε

)
.

2 Shadows of Simplicial Complexes

Let K be an abstract simplicial complex with vertices in RN, i.e., K(0) ⊂ RN. In this section, we define the shadow
(or geometric projection) of K as a subset of RN and study the natural shadow projection map.
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The shadow projection map p : |K| → RN sends a vertex v ∈ K(0) to the corresponding point in RN then extends
linearly to all points of the geometric realization |K|. Note that p is continuous.

Definition 2.1 (Shadow). We define the shadow of K as its image under the projection map p, i.e.,

S(K) :=
⋃

σ=[v0,v1,...,vk]∈K
Conv(σ),

where Conv(·) denotes the convex hull of a subset in RN.

Since the shadow is a polyhedral subset of RN, it can be realized by the N-dimensional skeleton of K by
Carathéodory’s theorem [7]. We now describe a special simplicial complex decomposition of the shadow in R2;
see Figure 1. We call it the shadow complex and denote it by SC(K).

(A) A shadow vertex v ∈ SC(K) is either v ∈ K(0) or a transverse intersection of p(e1) and p(e2) for edges e1, e2 ∈
K(1). The transverse intersections are shown in red in Figure 1.

(B) Triangulate the planar shadow using the shadow vertices such that a shadow edge or face does not contain any
other vertices of the shadow. Consequently, the realization of any shadow simplex σ ∈ SC(K) is contained in
p(τ) for some τ ∈ K.

Remark 2.2. Note that the triangulation described by (B) above may not be unique. We abuse notation here to
denote any such triangulation by SC(K).

Figure 1: [Left] An abstract simplicial complex K with planar vertices has been depicted. [Middle] The shadow S(K)
has been shown as a subset of the plane. [Right] The shadow complex SC(K) has been drawn. The new shadow
vertices due to transverse intersection are shown in red.

We use the following notation throughout the rest of the paper. We denote the simplices of an abstract simplicial
complex K by square braces, e.g., [ABC] for an abstract simplex on vertices A,B,C ∈ RN. We denote the convex-
hull of Euclidean points without any adornment, e.g., ABC denotes the Euclidean (filled in) triangle formed by the
vertices A,B,C. Lastly, the Euclidean length of a line segment AB is specified by AB.

2.1 π1-epimorphism in R2

We provide a sufficient condition for the abstract simplicial complex K so that p induces an epimorphism on the
fundamental group.

As already described in the introduction, we mention here the works of [4], where the authors considered the ho-
motopy equivalence of the shadow projection in the particular case when K is the (Euclidean) Vietoris–Rips complex
of a finite, planar point set. The projection was shown to induce π1-isomorphism. We generalize such results to any
simplicial complex K by proposing a general lifting condition to ensure π1-epimorphism of the projection map p. For
geometric graph reconstruction, we apply the condition to the Vietoris–Rips complex of planar samples but under
a possibly non-Euclidean metric: the ε-path metric. In particular, we infer below that when K is the Vietoris–Rips
complex under the Euclidean metric (as considered in [4]), K automatically satisfies the lifting condition.

Let K be a simplicial complex with vertices in R2. Any path γ in the geometric realization of its 1-skeleton |K(1)|

can be described by a sequence of oriented edges in K, and its projection p(γ) must also form a path in the 1-skeleton
of the shadow S(K), such paths are further referred to as shadow paths. However, the converse is not generally true,
i.e., every shadow path is not necessarily the projection of a path in the geometric realization of K. Nonetheless,
every shadow path can be lifted up to homotopy to K under the following lifting condition.

Definition 2.3 (Shadow Path Lifting). We say that an abstract simplicial complex |K| with K(0) ⊂ R2 satisfies the
lifting condition up to homotopy if whenever the images AB and CD of two edges [AB] and [CD] of K intersect, then
there exist vertices E, F ∈ K(0) such that either
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(A) [ABE] and [CDE] are simplices of K, or

(B) [AEF] and [CDEF] are simplices of K with EF intersecting AB.

We remark that in the setting where K is the Euclidean Vietoris–Rips complex (as considered in [4]), one can
choose E to be one of the four initial vertices that is closest to the intersection of AB and CD to meet condition (A).

The following theorem guarantees that p induces an epimorphism on the fundamental group of K. See [11,
Theorem 4.4] for a proof.

Theorem 2.4 (π1–epimorphism). Let K satisfy the above lifting condition. Then, the projection map p induces an
epimorphism on the fundamental groups.

3 Geometric Reconstruction using Vietoris–Rips Shadow

This section considers the geometric reconstruction of a Euclidean graph G from a noisy Euclidean sample S using
the shadow of Vietoris–Rips complexes. We assume that both the graph and sample are hosted in the plane, i.e.,
N = 2. For topological reconstruction, G is assumed to be only compact and connected. However, for geometric
reconstruction, we impose a few more geometric regularity assumptions on G.

3.1 Assumptions for Geometric Reconstruction

(A1) G is compact and connected with E(G) <∞;

(A2) any two edges of G are incident to at most one vertex;

(A3) each (open) edge of G is at least C1;

(A4) the tangents of each pair of incident edges e1, e2 ∈ E(G) of G make an angle in (0, π], and is denoted by ∠e1e2.
We set ∠e1e2 = ∞ if e1, e2 are not incident.

3.2 Homotopy Equivalence

Our π1-isomorphism argument for the shadow projection is presented in Theorem 1.2. The proof is based on a series
of technical lemmas to ensure that the shadow lifting condition (2.3) is satisfied for a sample near a Hausdorff-close
graph G. See [11] for the proof.

In many settings, it is desirable to recover a 1–dimensional proxy for the embedded graph G ⊂ R2. Since the
shadow complex S = S(Rε

β(S)) is a planar polygon, a natural choice for this proxy is the medial axis of the shadow;
see [2] for a definition. In the planar case, this medial axis is itself a geometric graph, as shown in [6].

4 Discussions

The current work successfully provides guarantees for a homotopy-type recovery of an embedded metric graph in RN

from the Vietoris-Rips complexes of a Hausdorff-close Euclidean sample. Moreover, we prove the π1-isomorphism of
the natural shadow projection of the path-based Vietoris-Rips complexes of a sample lying in a Hausdorff proximity
of a planar graph. Since the topological reconstruction works in any host dimension N ≥ 2, the immediate next
step is to consider three-dimensional graphs for geometric reconstruction. The difficulty lies in the elusive nature of
the shadow beyond the plane; the shadow projection of (even) Euclidean Vietoris–Rips is not fully known to induce
π1-isomorphism in R3 [1]. Nonetheless, the exploration remains very relevant to practical applications of Euclidean
graph reconstruction. The study sparks several interesting future research directions. Euclidean graphs are the
simplest, albeit interesting, class of geodesic spaces one can consider. It is reasonable to believe that the geometric
recovery of more general geodesic spaces—such as bounded curvature spaces considered by [12]—can similarly be
approached using the shadow of homotopy equivalent Vietoris-Rips complexes.
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[7] Jürgen Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of Convex Geometry, pages 389–448. Elsevier, 1993.

[8] Brittany Terese Fasy, Rafal Komendarczyk, Sushovan Majhi, and Carola Wenk. On the reconstruction of geodesic subspaces of Rn. Interna-
tional Journal of Computational Geometry & Applications, 32(01n02):91–117, 2022.

[9] Jean-Claude Hausmann et al. On the vietoris-rips complexes and a cohomology theory for metric spaces. Annals of Mathematics Studies,
138:175–188, 1995.

[10] Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homotopy reconstruction via the Čech complex and
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Figure 2: Reconstruction of a 5–pronged graph from a Hausdorff close sample via the shadow S(Rε
β(S)). The [TOP

LEFT] figure shows a shadow of the Euclidean Rips complex, which is topologically inaccurate (projected edges in
grey and faces in light blue). The [TOP RIGHT] figure shows S(Rε

β(S)), which reflects the correct homotopy type
(Theorem 1.2). Further homotopy equivalent simplifications of S(Rε

β(S)) are shown in the [BOTTOM LEFT] and
[BOTTOM RIGHT] figures. The [BOTTOM LEFT] shows the planar triangulation of the shadow S(Rε

β(S)) with
marked green boundary. The purple geometric graph shows an approximation of the medial axis.
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Figure 3: Similar to Figure 2, here the geometric graph under reconstruction is a closed curve with no leaves. The
[BOTTOM LEFT] panel shows the entire medial axis of the shadow complex S (purple). The [BOTTOM RIGHT]
panel displays a pruned version of the medial axis (red); see [2] for pruning strategies for medial axes.
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PRODUCT RANGE SEARCH PROBLEM

OLIVER CHUBET, ANVI KUDARAYA, NIYATHI KUKKAPALLI, AND DONALD R. SHEEHY

Abstract. Given a metric space, a standard metric range search would find all points within some
given distance of a given point. If we have two different metrics d1 and d2 on a set, define a product
range query as a point p and two radii r1 and r2. The result will be all points within distance r1
with respect to d1 and within r2 with respect to d2. In other words, it is the intersection of two
searches. We present two data structures for approximate product range search in doubling metrics.
Both are adapted from greedy trees, a data structure that can efficiently answer approximate range
searches in doubling metrics. The first data structure is a generalization of the Range Tree from
computational geometry using greedy trees rather than binary trees. The second data structure is
a single greedy tree constructed on the product of the two metrics.

1. Introduction

The metric range search problem is as follows: given a set of points P in a metric space, preprocess
P into a data structure where queries are of the form (c, r) where c is a point in P and r ≥ 0 is a real
number. Such a query returns the points in P ∩ ball(c, r). In one dimension, the metric balls are
intervals and products of intervals are axis-aligned boxes. The corresponding range search problem
is known as orthogonal range search. Thus, orthogonal range search is a product of one-dimensional
range searches. In this paper, we generalize the metric range search problem to product metric
ranges searches in doubling metrics. For two metrics, d1 and d2, the queries will be of the form
(p, r1, r2) and the result will be:

{x ∈ X | d1(x, p) ≤ r1 and d2(x, p) ≤ r2}.
In other words, it is the intersection of two range searches (p, r1) with respect to d1 and (p, r2)

with respect to d2. We call this the Product Range Search Problem. In this paper, we present
and analyze two data structures for product range search in doubling metrics. The first product
range tree is a multi-level data structure. The construction uses the classical paradigm of cascading
multiple decomposition schemes. The second product range tree is a greedy tree on the product
metric itself. However, the query algorithm must be modified to accommodate products of balls,
which may not correspond to a ball in the product metric.

In settings where distance computations can be computed efficiently, there are several efficient
data structures available, and some authors even consider range search a “solved” problem [2].
However, there are still cases when range queries over the full space may be impractical due to
expensive metric computations. Recently, product range search approaches have been considered
for cases where metric computations are expensive to compute, but the metric admits some decom-
posability into a product, such as is the case for the Ulam metric, discrete Frechet distance, and
dynamic time warping [1, 8]. Other applications that can be formulated as product problems are
multi-key range queries in databases [4]. Product-metric range search has recently been studied
for metrics that decompose into lp products of l∞ or l1 spaces [3]. To the best of our knowledge,
product range search has not been studied for products of non-normed spaces.

This research was supported by the NSF (CCF-23491790).
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1.1. Related Work. There are a plethora of data structures for range search in product metrics,
but most are for Euclidean space. For coordinate-wise comparisions, the k-d tree partitions the
plane into rectangular regions and has query time of O(n1−1/d + k) for a d-dimensional query [7].

There are also range trees for orthogonal range queries, which have a query time of O(logd−1 n+k)
using fractional cascading [7].

Ball trees are the simplest hierarchal structure for range search in metric spaces. They are defined
by recursively partitioning the data set, represented as a binary tree [11]. Each node of the tree
represents a metric ball, storing a center and radius. Range searches are performed using branch
and bound, where nodes can be pruned when the entire ball is disjoint from the query ball. Greedy
trees are a ball trees constructed using farthest point sampling to achieve packing and covering
guarantees. The algorithms we propose in this work are built with greedy trees because they are
simple, implementable, and admit strong theoretical guarantees, but other similar trees could work.

2. Background

2.1. Product Metrics. Let X be a set of points, and d1, d2, . . . , dm metrics on X. The l∞-product
metric d is

d(x, y) = max
1≤i≤m

di(x, y).

For clarity, when referring to a ball in metric di, we use the notation balldi , however when referring
to a ball in the product metric itself we may omit the subscript.

2.2. Product Range Search. Given a set of points P and m metrics d1, . . . , dm, a product range
search query is a point q, radii r1, . . . , rm, and an approximation parameter ε. The output contains
all points in the intersection of the metric balls centered at a query point q, and only points
approximately contained in the intersection. That is,

m⋂

i=1

balldi(q, ri) ⊆ output ⊂
m⋂

i=1

balldi (q, (1 + ε)ri)) .

2.3. Doubling Dimension and Packing. Doubling dimension offers a proxy for volume in finite
metric spaces. The doubling constant ρ is the minimum integer ρ such that any ball of radius r
can be covered with ρ balls of radius r

2 . We define the doubling dimension on a metric (X, d) as
dim(X, d) := log2(ρ).

Lemma 2.1 (Subadditivity of Dimension). Let X be a finite set, with d, the product of metrics d1
and d2. Then dim(X, d) ≤ dim(X, d1) + dim(X, d2).

A set S is r-packed if for any distinct a, b ∈ S it follows d(a, b) ≤ r for any a, b ∈ S .

Lemma 2.2 (Standard Packing Lemma [10]). Let (X, d) be a metric space and δ = dimX. If the
set Z is r-packed and can be covered with a ball of radius R then

|Z| ≤
(
4R

r

)δ
.

2.4. Greedy Permutation and Greedy Trees. Let P = (p0, p1, · · · pn−1) be a set of points in
a metric space with metric d where the ith prefix is denoted at Pi = {p0, p1, · · · pi−1}, or the first i
points. The greedy permutation is an ordering of the points P such that

d(pi, Pi) = max
j≥i

min
q∈Pi

d(pj , q).

The point p0 is chosen arbitrarily. A greedy permutation can be computed in O(n log∆) time for
low-dimensional data, where ∆ is the ratio of farthest to smallest pairwise distances in P [9]. There
are also O(n log n) time approximation algorithms [6, 9].
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2.5. Range Search in Greedy Trees. We analyze our range search algorithms using the prox-
imity search framework for ball trees established by Chubet et al. [5]. A range search maintains
a heap H containing viable nodes that can intersect the query range. A range search maintains
the invariant that any point in the query range is either covered by some node in H or has been
added to the output. Additionally, each point appears in at most one node in H or the output
at any given time. The width w of a search is the maximum number of nodes in H during any
given iteration of the algorithm. The height h of a search is the maximum number of times a node
containing a(n arbitrary) point p splits.

A useful property of greedy trees is that they can be constructed recursively. In particular,
merging two greedy trees is more efficient than constructing a greedy tree on the same point set.

Lemma 2.3. (Chubet et al. [6])

• A greedy tree can be constructed in 2O(δ)n log n time.
• Two greedy trees on n points can be merged in 2O(δ)n time.
• A greedy tree is stored in O(n) space.

3. Greedy Range Tree on Product Metric

A greedy range tree (see Figure 1a) on a set P and metrics d1, . . . , dm is defined recursively, as
follows:

• The primary tree is a greedy tree on all of P using metric d1.
• Each node v of the primary tree points to an auxiliary greedy range tree on the subset
points(v) with metrics d2, . . . , dm.

The construction of a greedy range tree is also recursive (see Figure 1b). First, we construct a greedy
tree for d1. We observe that for a node u with children uL and uR, we have points(u) = points(uL)∪
points(uR). So, rather than constructing the greedy tree on points(u) for each node u, we merge the
trees of its children. For the m metrics, a bottom-up merging process is repeated recursively across
m − 1 levels. Note that each point is contained in at most one node per depth from the root, so
each point participates in O(log∆) merges. Thus, each recursive level adds a multiplicative factor
of log∆ to the build time. Note that for simplicity our analysis uses ∆ = max1≤i≤m∆i, where ∆i

is the spread of P under metric di.

Theorem 3.1. Let d1, . . . , dm be m metrics on an n-point set P . A product range tree can be con-
structed in 2O(δ∗)n logm−1∆ time and has space complexity O(n logm−1∆), where δ∗ = max1≤i≤m δi.

(a) Each node of a greedy range tree corresponds
to an intersection of balls from each metric.

(b) The auxiliary greedy range trees are built
bottom-up. Each node merges the auxiliary trees
of its children.

3



3.1. Query Time. Now we discuss how to perform greedy range tree queries, starting with the
case of only 2 metrics. We first query the greedy tree built on the first metric d1, and return a
collection of nodes that are approximately contained in balld1(q, r1). This takes (2 + 1

ε )
O(δ1) log∆

time and returns a collection of (2+ 1
ε )
O(δ1) nodes. Then, we query each node returned with (q, r2)

in d2. This takes (2+
1
ε )
O(δ2) log∆ time per node. We continue similarly for each metric. Note that

the resulting collection size may increase by a factor of (2 + 1
ε )
O(δi) for each layer i of the greedy

range tree. The bound on the output size of each layer follows from the bounded width of a greedy
tree range search [5].

Theorem 3.2. An m-metric query in a greedy range tree takes (2 + 1
ε )
O(δ) log∆ + O(k), where

δ =
∑

1≤i≤m δi, and k is the size of the output.

4. Greedy Tree on Product Metric

A greedy tree on the product metric is a greedy tree that uses the product metric to compute
distances. However, the query algorithm is modified to accommodate product range search queries,
which are more complex than typical range search queries. By Lemma 2.3, the build time is
2O(δ)n log n and the space is O(n).

4.1. Query Algorithm. The following algorithm is similar to range search in a ball tree [5], since
we are querying on one greedy tree. However, the pruning rules are modified to account for all
query radii.

Input: Greedy tree T , radii r1, . . . , rm, ε > 0

(1) Initialize max-heap H with the root of T .
(2) While H is not empty:

(a) Remove node v with maximum radius r from H.
(b) If di(q, v) ≤ (1 + ε)ri − r for all i, then add v to output.
(c) Else if v is not a leaf:

(i) Split v into children vL and vR with radii rL and rR respectively.
(ii) If di(q, vR) ≤ ri + rR for all i add vR to H.
(iii) If di(q, vL) ≤ ri + rL for all i add vL to H.

4.2. Query Time. We analyze the query time for the case of two metrics.

Theorem 4.1. Let d1 and d2 be metrics with doubling dimensions δ1 and δ2 respectively. Then a
product range query (q, r1, r2, ε) takes

Aδ2
(
2 +

1

ε

)O(δ1+δ2)

log∆ +O(k)

time, where k is the size of the output, and A = max{r1,r2}
min{r1,r2} .

The bound follows from a packing argument used to bound the width of the search. The ratio of
largest query radius to smallest appears in the packing bound because we keep nodes in the heap
that intersect the largest metric ball in the product, however, we may also need to split the nodes
to the scale of the smallest query radius.
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Fully Packed and Ready to Go: High-Density,
Rearrangement-Free, Grid-Based Storage and Retrieval

Tzvika Geft∗, Kostas Bekris∗, and Jingjin Yu∗

Abstract— We consider an ordered storage and retrieval
problem: a set of uniform-sized, labeled loads (e.g., containers,
pallets, or totes) must be placed in a 2D grid storage area as
they arrive sequentially, and then be retrieved in some (possibly
different) order. Each load occupies a grid cell and may be
moved, e.g., by a robot, along the cardinal directions. Such
storage systems arise in logistics, industrial, and transportation
domains, where space utilization and retrieval time are critical
metrics. To maximize space utilization, loads must be densely
packed with some loads blocking access to others, which raises a
key question: How should one store the loads to minimize costly
rearrangements, i.e., the number of relocated loads, during
retrieval? We identify conditions, alongside efficient algorithms,
for achieving either zero or near-optimal rearrangements under
different knowledge assumptions. While the online case (i.e., no
prior knowledge of the storage and retrieval sequences) induces
a trade-off between density and rearrangement, we show that
even partial prior knowledge essentially eliminates the trade-
off. When the sequences are fully known, we further provide
an intriguing characterization: rearrangement can always be
eliminated if the grid’s open side (used to access the loads) is
at least 3 cells wide, even for full capacity storage.
Full version: https://arxiv.org/pdf/2505.22497

I. INTRODUCTION

The past two decades have witnessed the dramatic rise of
robotics and automation technologies for transporting uniform-
sized loads or items (e.g., containers, pallets, totes, etc.) in
logistics applications. Notable examples range from thousands
of mobile robots roaming in a warehouse helping order
fulfillment [1] to automated cranes transporting containers
at shipping yards [2]. Oftentimes, operations at logistics
hubs have two distinct phases: first, the storage of incoming
loads, and later, their retrieval for further transport. A central
challenge these systems must contend with is the trade off
between maximizing space utilization and storage/retrieval
efficiency, as denser storage necessarily makes arbitrary load
access more difficult. Relocations of loads during retrieval
is a key metric to minimize, as each relocation incurs costs
due to time-consuming pick-up and drop-off operations.

This work investigates the coupling between storage density
and rearrangement efforts by asking: How far can we
maximize storage space utilization while minimizing load
rearrangement? We focus on 2D grid-based storage systems,
akin to Puzzle-Based Storage (PBS) [5], where each grid cell
can store a load and loads can be moved along the grid by
a mobile robot, as long as the motion is collision-free. We
now define the setting formally.

Problem definition. Consider a rectangular r × c grid
storage space W with r rows and c columns. Fix the

∗Computer Science Dept., Rutgers University, New Brunswick NJ, USA

AGV robot

Unit load

Fig. 1: Application examples. Left: Grid-based storage using robotic
vehicles (AGVs) for transferring loads [3]. The AGV can go beneath
a load and can move in all four grid directions. Right: Illustration
of an automated parking garage where vehicles are the load to be
autonomously placed and retrieved [4]. Similar to the first case,
AGVs can go under vehicles to transport them.

orientation of W so that its bottom row, also called front row,
is the open side of W through which loads are stored/retrieved.
See Figure 2. The loads have distinct labels 1, . . . , n, with
n ≤ rc. The density of the W is n/(rc). Each load occupies
exactly one grid cell. Each load can be moved by a robot
via a path of empty cells along the four cardinal directions
(up, down, left, or right). Specifically, the following types of
actions are valid:
• Storage: A robot can store a load in an empty cell v in
W via a path from any cell in the front row to v.

• Retrieval: A robot can retrieve a load from W via a path
from its current cell to any cell in the front row.

• Relocation: A robot can relocate a load within W to an
empty cell v via a path from its current cell to v.
Loads must be all stored and then retrieved according

to prescribed sequences. The departure sequence, i.e., the
order in which loads are to be retrieved, is fixed to be
D = (1, . . . , n) without loss of generality. We denote the
arrival sequence, i.e., the order in which loads must be stored,
by A = (a1, . . . , an). We study the following problem:

Storage and Retrieval with Minimum Relocations
(StoRMR): Given a storage area W , and arrival and departure
sequences A and D, respectively, find a minimum-length
sequence of actions that stores all loads per the sequence A
and then retrieves the loads per the sequence D.

We further consider various degrees of prior knowledge:
The problem is offline when A and D are known in advance.
Otherwise, the problem is online, where two versions are
examined: (i) Online with lookahead: D is fully known,
but A is revealed online, one load at a time, which we call
an arrival lookahead of 1. That is, the departure position of
each arriving load is available.1 (ii) Fully online: Neither A

1In the full version, we also consider a larger lookahead, i.e., additional
foresight of A.
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Fig. 2: A rearrangement-free solution for an arrival sequence A = (9, 4, 7, 3, 6, 2, 1, 8, 5) and departure sequence D = (1, 2, 3, 4, 5, 6, 7, 8, 9)
for a (3× 3) grid accessible only from the bottom. Snapshots are illustrated from left to right. (a) The first arriving (load) 9 can be directly
stored at the top using a (straight) upward path. (b) Next, 4 arrives and can be stored in front of 9, leaving the space in between. (c) 7 is
stored using an upward path with a single turn, i.e., a column-adjacent path. (d) 3, 6, 2, can be stored as shown using upward paths. (e) 1,
8, 5 can be stored similarly. At this stage, all loads have arrived. (f) 1, 2, 3, 4, and 5 can be retrieved sequentially directly using downward
paths. Then, 6 can be retrieved using a downward path with a turn. (g) 7, 8, and 9 can be retrieved using downward paths.

nor D are known in advance, but the number of loads n is
known. In the best case, 2n actions (a storage action and a
retrieval action for each load) are necessary. We call such
solutions rearrangement-free.

Contributions. Our key insight is that the den-
sity–rearrangement tradeoff can be (nearly) eliminated given
prior information on the arrival and departure sequences. The
precise contributions are as follows:

• Offline setting: Relocation may be required when the
number of columns is c ≤ 2. For any c ≥ 3, however, it
is always possible to avoid relocations, for any number of
loads, even at full capacity.

• For the online with lookahead setting strong guarantees
remain possible:
– If n ≤ r(c − 1) + 1, i.e., when it is possible to

keep a single column nearly empty, there exists a
rearrangement-free solution.

– When c ≤ r, a solution with at most r − 1 relocations
exists for any density, yielding a 9/8-approximation for
the total number of actions.

• Fully online setting: Without prior information, density
must be sacrificed to limit rearrangements. We characterize
the tradeoff by providing the maximum achievable density
for a given bound on the number of actions allowed per
load. In particular, guaranteeing no relocations requires
a natural aisle-based layout, with maximum density 2/3.
(see Figure 7, left)

All the positive results are accompanied by (near) linear-
time algorithms in the number of loads, which determine the
loads’ storage and retrieval paths. Besides the guarantees on
minimizing relocations, our solutions result in desirable paths
for accessing loads. More specifically, in our rearrangement-
free solutions, each path used for storage and retrieval lies in
one column with a possible additional lateral segment to a cell
adjacent to that column, i.e., each path is distance-optimal
up to an additive factor of 1.

II. RELATED WORK

A sizable body of work considers storage systems with
uniform-sized loads. In this brief review, we distinguish
prior work along two main axes. The first is whether
storage/retrieval is ordered, with sequence(s) specified in
advance, or online, where requests arrive with little prior
information. The second is the motion model: Grid-based

systems, which include this work, allow loads to move along
both axes of the grid. In stack-based systems, often motivated
by shipyards, loads are placed in vertical stacks with Last-In-
First-Out (LIFO) access, so that a load can only be retrieved
after removing those above it. Under this dichotomy, ordered
storage and retrieval have been studied almost exclusively in
stack-based systems, whereas for grid-based systems, they
have received little attention.

Grid-based storage. Gue [6] studies rectangular grid
warehouses under a depth bound limiting the number of
blocking objects. Puzzle-Based Storage (PBS) [5] systems
consist of dense 2D grids with as few as a single empty
“escort” cell: loads are moved into the escort, treating other
loads as movable obstacles. PBS works typically focus on
online retrieval of one or a few loads without a strict order,
and generally omit a storage phase [7]. Ordered retrieval has
been examined in decentralized conveyor-based systems [8],
where loads arrive randomly and must be output in a given
sequence. These systems rely on frequent relocations and
dedicate grid rows or columns to motion rather than storage,
in contrast to our maximum storage density, rearrangement-
free focus. Stack-based storage. Ordered retrieval has
focused primarily on stack-based systems, in which the LIFO
constraint substantially alters the problem structure: even
deciding whether relocations can be avoided under given
arrival and departure sequences is NP-hard [9]. The classic
Block Relocation or Pre-marshalling problems [10, 11] focus
on minimizing relocations during/just before retrieval after
storage is complete; these too remain NP-hard, precluding
rearrangement-free guarantees.

III. THE OFFLINE SETTING

This section presents a characterization of the existence of
rearrangement-free solutions in the offline setting. First, we
observe that relocations may be necessary to support 100%
density for narrow grid openings, as shown in Figure 3:

1

4

1

4 2

1

4 2

31

Fig. 3: Consider an instance with A = (1, 4, 2, 3) and
D = (1, 2, 3, 4). Given that load 1 must depart first, it has to be
stored in the front to avoid relocations. This forces the above-shown
storage sequence (or its vertical mirror, where 1 is placed on the
bottom right). This leaves load 2 buried behind loads 3 and 4. This
means it cannot be retrieved without a rearrangement.



72

1 12

72

1 12 3

72

1 12

4

85

10

3

72

1 12

4

85

10

3

9

6

11

72

1 12

4

85

10

3

9

6

11

1 12

72

1 12

4

85

10

3

9

6

11

1 8

2 3

41 8

2 3

1 8

2 3

4

7

6

5

10

12

1 8

2 3

4

7

6

5

9

11 10

12

1 8

2 3

4

7

6

5

9

11 10

12

1 8

2 3

4

7

6

5

9

11 10

12

1 8

2 3

4

7

6

5

(a) (b) (c) (d) (e) (f ) (g)
Fig. 4: Running Algorithm 1 on the input D′ = (12
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where non-equal matching loads of D and D′ are put in the left two columns C1 and C2. (c) In the third interaction, D and D′ have an
equal matching load 3, which is put in C3. (d) The next two iterations fill up columns C1 and C2. This leads to the solution following case
1 from here on. (e) The leftover loads in C3 are filled up to complete the arrangement. The solution with arrows showing the guaranteed
local adjacencies for [12] and D′ is shown in (f) and (g), respectively.

Observation 1. For a 2× 2 storage space, relocations may
be necessary.

We now proceed with key definitions and notation: An
arrangement A of the loads is an injective mapping that
specifies a cell in W , i.e., a (row, column) pair, for each load.
Two loads are adjacent in a given arrangement if they are
located in horizontally or vertically adjacent grid cells. An
arrangement A is defined to satisfy an arrival (resp. departure)
sequence A (resp. D), if all the loads can be stored (resp.
retrieved) according to sequence A (resp. D) with one action
per load, where A is the final (resp. initial) arrangement.
Fix D = [n], where [n] := (1, . . . , n), leaving A as the sole
sequence that can change per problem instance.

Observation 2. An arrangement A satisfies an arrival
sequence A if and only if A satisfies the departure sequence
in which A is reversed.

Following Observation 2, the problem of finding a
rearrangement-free solution is equivalent to finding an ar-
rangement A that satisfies two departure sequences, namely
the true departure order [n] as well as a permutation D′

of [n], where D′ is the reverse of A in the original input.
For example, given A = (1, 4, 2, 3) and D = (1, 2, 3, 4)
as in Fig. 3, the two departure orders to be satisfied are
the original one D = (1, 2, 3, 4) and D′ = (3, 2, 4, 1). We
assume a density of 1 (otherwise, the situation is simpler).

It suffices to check the following local adjacency conditions
to determine whether a given arrangement A satisfies a
departure sequence D′:

Observation 3. An arrangement A satisfies a departure
sequence D′ = (d1, . . . , dn) if and only if every load di is
either in the bottom row or is adjacent in A to an load dj
that departs earlier, i.e., j < i.

Let D′ be an input permutation of [n]. The following
algorithm constructs a valid arrangement A by iteratively
assigning placements bottom-up, ensuring the adjacency
conditions of Observation 3 are met for [n] and D′. Recall
that C1, C2, C3 are the columns in left-to-right order.

Algorithm 1. In the first stage, the algorithm iterates jointly
over [n] and D′ in order and repeats the following: Let x and
y be the first two items in [n] and D′, respectively, which
have not been assigned a cell. If x ̸= y, assign x and y
to the lowest unassigned cells of C1 and C2, respectively.

Otherwise, if x = y, assign x to the lowest unassigned cell
in C3. Repeat this process until one (or more) of the columns
becomes fully assigned, at which point we proceed to the
next stage, which has two cases:

Case 1: If C1 and C2 are fully assigned (notice that since
we assign items to them together, they become fully assigned
together), we continue filling up C3 (bottom-up) by adding
the remaining unassigned items of [n] (in order).

Case 2: Otherwise, C3 becomes fully assigned first. In this
case, we fill in C2 (bottom-up) with the remaining items of
D′ until C2 is filled up. Then, we fill C1 similarly with the
remaining items of [n].

Theorem 1. For an r × 3 storage area with r ≥ 1, there is
an offline rearrangement-free solution. The solution can be
found in O(n) time, where n is the number of loads.

Proof sketch. One must verify that the adjacency conditions
of Observation 3 hold for [n] and D′ in the arrangement
output by Algorithm 1. Figure 4 illustrates one case.

We now use Theorem 1 to obtain rearrangement-free
solutions for the more general case of three or more columns.

Theorem 2. For an r× c storage area with r > 1, an offline
rearrangement-free solution always exists if and only if c ≥ 3.
The solution can be found in O(n log r) time.

Proof. Assume a density of 1; otherwise, the situation is
simpler. The argument proceeds in two stages. First, iterate
over the c − 3 leftmost columns in left-to-right order,
filling up a column at a time as follows (see Figure 5
for an example): Let C denote the current column, and let
s = (a(1), a(2), . . . , a(r)) denote the next r loads in A (the
original non-reversed sequence) sorted per departure order.
We proceed to place each load a(i) in the cell of column
C located on the (i)-th row away from the front row. The
placement also ensures that each load can be retrieved directly
using only C, as the load below it departs earlier.

After the first stage, we apply the algorithm from Theorem 1
to the remaining three columns and inherit the theorem’s
properties. Finally, the running time follows from sorting r
loads at a time for at most n/r batches.

IV. ONLINE SETTING WITH LOOKAHEAD

This section analyzes the variant where the position of
each arriving load in the departure sequence D is known but



the arrival sequence A is not given. The proof of Theorem 2
makes it clear that when D is known, it is possible to fill up
columns as loads arrive without fully knowing A, for most
of the storage space, while ensuring a rearrangement-free
solution. Proposition 1 formalizes this observation.

Proposition 1. For an r × c storage area and r(c− 1) + 1
(or fewer) loads, a rearrangement-free solution always exists
using an arrival lookahead of 1.

Proof. Let us assume there are n = r(c − 1) + 1 loads, as
it is straightforward to handle fewer loads. The goal is to
fill the leftmost c − 1 columns top-down such that at the
departure stage, the loads in each column Ci depart after the
loads at column Ci+1 have departed. We store each load in
a column at the current topmost available cell based on its
departure order: Load 1 is stored at Cc, at its front cell. Loads
2, . . . , 2+r−1 are stored at Cc−1, loads 2+r, . . . , 2+2r−1
are stored at Cc−2, and so on. This approach results in a
straight upward path for each storage action. Each retrieval
is possible via the adjacent column on the right or a straight
downward path.

The observation leading to Proposition 1 allows to show
that if W is square-shaped or wider (at its open side), full-
capacity storage with limited relocations is possible.

Theorem 3. For an r × c storage area with r ≤ c, there is
always a solution with at most r − 1 relocations using an
arrival lookahead of 1.

Proof sketch. We generalize the column-filling approach from
Proposition 1 to a path-filling approach, i.e., we define a
sequence of paths, each of which will contain loads departing
only after the loads on the next path. The first c− r paths are
the leftmost c−r columns. The remaining portion of W is an
r × r square. Take the next path to be the square’s leftmost
column and top row, i.e., an L-shaped path. Define the next

(a) (b)

(c) (d)
Fig. 5: An example execution of the algorithm described in
Theorem 2. A = (4, 10, 6, 12, 2, 3, 9, 15, 1, 14, 13, 7, 5, 11, 8) and
D = [15]. (a) Knowing the first three loads to arrive are 4, 10, 6, we
store them in the order they depart, which is 4, 6, 10 from bottom
to top. These go to C1. Similarly, the next three arrivals are stored
in C2 as 2, 3, 12, from bottom to top. (b) For the next 9 arrivals, we
run the algorithm from Theorem 1. For this, we turn the remaining
loads of A backward to get D′ = (8, 11, 5, 7, 13, 14, 1, 15, 9) and
the corresponding portion of D is (1, 5, 7, 8, 9, 11, 13, 14, 15). (c)(d)
Arrows showing how departures and arrivals can be handled without
rearrangements, respectively. Note that the arrows for arrivals are
drawn backwards to be consistent with Fig. 4.

π1 π2 π3 π4 π5 π6 π7 π8

Fig. 6: The storage strategy of Theorem 3 for a (5× 8) grid. Paths
π1–π3 are the left three vertical columns. Paths π4–π7 are L-shaped
and distinguished using different colors. π8 is only the bottom right
cell. Corner cells are marked with crosses, and the possible retrieval
paths are shown using arrows.

path similarly for the remaining (r−1)× (r−1) square, and
so on; see Figure 6. Denote the resulting sequence of paths
by π1, . . . , πc. Each path contains a cell on the front row,
so we can fill each path with arriving loads back to front
(similarly to a stack). Loads are assigned to the paths based
on their departure order: Load 1 is assigned to πc (which
is a single cell), loads 2, 3, 4 are assigned to πc−1, and so
on, with the last |π1| departing loads assigned to π1. Upon
retrieval, we may require a single relocation for each load
stored on a corner of an L-shaped path.

One can verify that the r − 1 bound on relocations
translates to a 9/8-approximation algorithm for minimizing
total actions.

V. THE FULLY ONLINE SETTING

In the fully online setting, density must be limited to
minimize rearrangements, and the arrangement of the loads
in W needs to be carefully chosen:

Theorem 4. To guarantee at most a actions for each
fully online storage and retrieval, the density must be at
most 2a/(2a + 1). The bound is asymptotically tight: a
2a/(2a+ 1)− ε density is achievable for a small ε > 0.

We obtain the density upper bound using a result of Gue [6],
and realize it using aisle-based arrangements; see Figure 7.

Fig. 7: Left: A 4 × 6 storage area with 1-deep aisles. Right: A
4× 10, 2-deep aisle arrangement.

VI. CONCLUSION

We establish a range of conditions for (nearly)
rearrangement-free storage and retrieval of uniform loads
in dense 2D grids. The results highlight the practical utility
of the setup and are promising for real-world adoption.
When considering the NP-hardness of related stack-based
problems [9, 12], our findings, especially Theorem 1, are
surprising, as at first glance some variants may also appear NP-
hard. Future directions include sharpening our understanding
of the online cases, interleaving storage and retrieval, and
extensions to irregular grids.
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Undecidability of Tiling with a Tromino
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Abstract

Given a periodic placement of copies of a tromino (either or ), we prove co-RE-
completeness (and hence undecidability) of deciding whether it can be completed to a plane
tiling. By contrast, the problem becomes decidable if the initial placement is finite, or if the
tile is a domino instead of a tromino (in any dimension). As a consequence, tiling a given
periodic subset of the plane with a given tromino ( or ) is co-RE-complete.

We also prove co-RE-completeness of tiling the entire plane with two polyominoes (one of
which is disconnected and the other of which has constant size), and of tiling 3D space with
two connected polycubes (one of which has constant size). If we restrict to tiling by translation
only (no rotation), then we obtain co-RE-completeness with one more tile: two trominoes for a
periodic subset of 2D, three polyominoes for the 2D plane, and three connected polycubes for
3D space.

Along the way, we prove several new complexity and algorithmic results about periodic
(infinite) graphs. Notably, we prove that Periodic Planar (1-in-3)SAT-3, 3DM, and Graph
Orientation are co-RE-complete in 2D and PSPACE-complete in 1D; we extend basic results
in graph drawing to 2D periodic graphs; and we give a polynomial-time algorithm for perfect
matching in bipartite periodic graphs.

1 Introduction

Given one or more prototiles (shapes) and a target space (e.g., the plane), a tiling [GS87] is a
covering of the space with nonoverlapping copies of the prototiles, called tiles, without gaps or
overlaps. By default, we allow the copies to translate, rotate, and reflect, though reflections do
not affect our (or most) results, and we will also consider translation-only tiling. In this paper, we
study three fundamental computational problems about tilings:

Problem 1 (dD Tiling). Given one or more prototiles, can they tile d-dimensional Euclidean
space?

∗Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal group. Please
include all authors (including this one) in your bibliography, and refer to the authors as “MIT–ULB CompGeom
Group” (without “et al.”).

†Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, USA, zabel@mit.edu

‡Miner School of Computer and Information Sciences, University of Massachusetts, Lowell, MA, USA,
hugoakitaya@gmail.com. Supported by NSF grant CCF-2348067.

§Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
USA, {lkdc,edemaine,diomidova,della,jaysonl}@mit.edu
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Problem 2 (dD Tiling Completion). Given one or more prototiles, and given some already placed
tiles, can this partial placement be extended to a tiling of d-dimensional Euclidean space?

Problem 3 (dD Subspace Tiling). Given one or more prototiles, and given a subset of d-dimensional
Euclidean space, can the prototiles tile that space?

Problem 1 is a special case of Problem 2 (with no preplaced tiles), and Problem 2 is a special
case of Problem 3 (where the preplaced tiles form the excluded subspace). In Problems 2 and 3,
there are multiple ways to specify the preplaced tiles or subspace respectively:

1. Finite: There are finitely many preplaced tiles, or finitely many excluded regions from d-
dimensional space, and we encode each explicitly.

2. Periodic: The preplaced tiles or excluded regions are periodic in d′ ≤ d dimensions, and
we encode the fundamental domain and the d′ translation vectors along which to repeat the
fundamental domain. (Our results use d′ = d.)

3. Eventually periodic: The preplaced tiles or excluded regions are periodic outside a finite
region, so we use a hybrid: a periodic encoding, plus an explicit finite list of exceptions
(excluded/included preplaced tiles or excluded regions). (Our results do not use this form of
the problems, but we mention it for completeness.)

All three problems have been shown undecidable (solved by no finite algorithm) in a variety
of settings. Such undecidability proofs generally simulate a Turing machine, where finding an (infi-
nite) tiling corresponds to the machine running forever, which shows co-RE-hardness. Recently,
Demaine and Langerman [DL25] proved that these problems are in co-RE in very general settings,
and thus co-RE-hardness in fact establishes co-RE-completeness.

Table 1 summarizes the history of many such results, focusing on Problem 1, but also capturing
Problem 3 in the form of a periodic “piece”. In general, we aim for undecidability under the
following objectives: (1) Minimize the target dimension d. In addition to integer d, we define
d = i + 1

2 to consist of i infinite real dimensions plus one bounded dimension given by a real
interval. For example, 2.5D means R2 × [a, b] for some a, b ∈ R; (2) Minimize the number of
distinct prototiles required; (3) Simplify the prototile shapes; (4) Minimize the preplaced tiles or
excluded subspace.

In this paper, we improve the state-of-the-art for all three problems. In this abstract, we focus
on the tile completion problem. See the full version [GAA+25] for details on the other results.

We obtain particularly tight results for tiling completion with a single prototile:

1. Given a periodic preplacement of copies of a single tromino ( or ) in 2D, tiling completion
is co-RE-complete, and hence undecidable. As a consequence, there are periodic preplace-
ments that can be completed but only aperiodically. This undecidability result is tight by
the following contrasting results:

2. Given a periodic preplacement of copies of a single tromino ( or ) in 1.5D, tiling completion
is PSPACE-complete, and hence decidable.

3. Given a finite preplacement of copies of a single tromino ( or ) in 2D, tiling completion
is NP-complete, and hence decidable.
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Dim. Number/types of pieces Result Date
Tiling by translation by rotation + translation

dD 1 disconnected
polycube + periodic

n/a undecidable [GT25] 2023-09

4D 4 connected polycube n/a undecidable [YZ24d] 2024-09
4D 3 connected polycube n/a undecidable [YZ24a] 2024-12
3D 6 connected polycube n/a undecidable [YZ25b] 2024-08
3D 3 connected polycube n/a undecidable [YZ25a] 2025-07*
3D 2 connected polycube n/a undecidable [Kim25b] 2025-08*
2.5D 3 connected polycube 2 connected polycube undecidable new

2D n connected polyomino n connected polyomino undecidable [Gol70] 1970
2D 11 connected polyomino 5 connected polyomino undecidable [Oll09] 2009-04
2D 10 connected polyomino n/a undecidable [Yan23] 2023-02
2D 9 connected polyomino n/a undecidable [Yan25] 2024
2D 8 connected polyomino n/a undecidable [YZ24b] 2024-03
2D 7 polyomino n/a undecidable [YZ24c] 2024-12
2D 7 orthoconvex polyomino n/a undecidable [YZ25d] 2025-06*
2D 4 disconnected polyomino n/a undecidable [YZ25c] 2025-06*
2D n/a 3 polygons, or

2 polygons + periodic
undecidable, co-RE
complete [DL25]

2024-09

2D 4 polyhex 2 polyhex or
3 connected polyomino

undecidable [Sta25] 2025-06*

2D 5 connected polyomino 3 connected polyomino undecidable [Kim25a] 2025-08*
2D 3 polyomino:

2 connected +
1 disconnected

2 polyomino:
1 connected +
1 disconnected

undecidable new

2D 2 tromino + periodic 1 tromino + periodic undecidable new
2D 2 polyomino 1 polyomino OPEN —
dD domino + periodic domino + periodic polynomial new
2D 1 connected polyomino n/a decidable, O(n) [Win15] 2015
2D 1 disconnected polyomino n/a decidable, periodic

[Bha20]
2016-02

1.5D 2 tromino + periodic 1 tromino + periodic PSPACE-complete new

1.5D 3 polyomino:
2 connected +
1 disconnected

2 polyomino:
1 connected +
1 disconnected

PSPACE-complete new

1D n polyomino n polyomino decidable, O(n) [GT23] 2023

Table 1: Past and new (un)decidability results for tiling Euclidean space, in various dimensions,
and tiling by translation (left) or by rotation/translation (right). Bold indicates current hardness
record holders. Dates are year-month, and “*” indicates recent independent work. Dashed lines
separate undecidable from decidable. Our results are highlighted in blue and red. We give some
intuition for the red result below.

3



4. Given a periodic preplacement of dominoes in dD for any d ≥ 1, tiling completion can
be solved in polynomial time. This is a consequence of the mathematical property that, if
a periodic preplacement of dominoes in dD can be completed to a tiling, then it can be
completed periodically with the same period.

Our results are the first to prove undecidability of tiling completion with a single prototile. The
earliest undecidability result for tiling completion was by Robinson [Rob71], who used 36 Wang tiles
(which can be implemented by 36 polyominoes [Gol70]) and required only finite preplacement. Yang
[Yan13] showed how rule 110 can be simulated using 6 Wang tiles, and thus 6 polyominoes. (Rule
101 is a one dimensional cellular automaton where the next state of a cell depends on the its current
state and the current state of the two neighboring cells, similar to Conway’s Game of Life.) Together
with Cook’s undecidability of rule 110 for an eventually periodic initial configuration [Coo04], this
implies undecidability of tiling completion with 6 polyominoes and eventually periodic preplacement
[DL25], using only translations. More recently, this bound was lowered for fixed general polygons
to 3 using finite preplacement, or 2 using eventually periodic preplacement [DL25]. In addition to
reducing to 1 shape and simplifying the shape to a polyomino, we characterize the exact size of
polyomino (3) and dimension (2) required for undecidability, while (necessarily) requiring periodic
preplacement.

We show, in the full version, that the problem of finding a satisfying assignment to an infinite
instance of Planar 3SAT given by a planar periodic graph is undecidable. We reduce from this
problem to the problem of tile completion. Figure 1 shows the clause gadget for trominoes.
There are four blue dots at the top and four blue dots at the bottom of the gadget. The first,
second and third literal are encoded by the top left, top right, and bottom left pairs of blue dots,
respectively. The gadget ensures that exactly one, among the pair of blue dots of a literal, is covered
by an trominoes contained in the gadget. The truth assignment is then encoded by which of the
blue dots is covered. The gadget was found by computer search and we used computer search to
verify that a False-False-False assignment cannot be extended to a tiling.

(a) 3SAT — mini (b) True-True-True (c) True-True-False (d) True-False-True

(e) True-False-False (f) False-True-True (g) False-True-False (h) False-False-True

Figure 1: 3SAT for trominoes.
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Planar Emulators for Geometric Intersection Graphs1

(Extended Abstract)*2

Hsien-Chih Chang† Jonathan Conroy‡ Zihan Tan§ Da Wei Zheng¶
3

1 Introduction4

Given a set of geometric objects S, the intersection graph of S, denoted GS, is a graph with vertex set5

S, such that an edge exists between two objects if and only if they intersect. The most general form6

of geometric intersection graph in the plane is the class of string graphs, where vertices are arbitrary7

connected curves. One may also study intersection graphs of more restricted class of objects, such as8

disks, fat objects, or axis-aligned rectangles.9

Our goal is to study distances between objects on a geometric intersection graph G. The distance10

between two vertices u and v in G, denoted δG(u, v), is the number of edges in the shortest path between u11

and v. (Note that we assume edges are unweighted; if we allowed arbitrary edge weights then all metrics12

are realizable as string graph metrics, as the complete graph is a string graph.1) Distance problems on13

geometric intersection graphs have attracted a great deal of attention, including diameter computation14

[CS19b, CS19a, BKBK+22, CGL24, CCG+25], clustering [BFI23, FRSS25], spanners [YXD12, CCV10,15

Bin20, CT23, CH23], low-diameter decomposition and its applications to LP rounding [Lee17, KLSS21,16

KLS+22, LPS+24], and much more. Many results have been obtained for restricted classes of intersection17

graphs rather than the most general string graphs.18

In partial explanation, several results on unit-disk graphs (UDGs) can be traced back to the existence19

of a O(1)-distortion planar spanner: every unit-disk graph G has a subgraph H which is planar, such20

that for every pair of vertices (u, v), we have δG(u, v)≤ δH(u, v)≤ O(1) ·δG(u, v). Planar metrics are21

well studied, and tools from planar graphs (in particular, shortest-path separators) can be combined22

with the planar spanner to design algorithms for UDGs. The planar spanner for UDGs is helpful for23

distance problems even beyond the O(1)-approximate regime; for example, it is a crucial ingredient for24

a near-linear time (1+ ϵ)-approximate diameter algorithm and a compact (1+ ϵ)-approximate distance25

oracle [CS19b], and in the design of coresets for clustering [BFI23]. (Note that one can also obtain26

shortest-path separators on UDG directly, not using a planar spanner [YXD12, HHZ24]; this is another27

way in which the metric structure of UDGs is similar to that of planar metrics.)28

The use of planar techniques for geometric intersection graphs so far has seemed somewhat limited29

to UDGs and closely related classes: for example, the only classes of intersection graphs with planar30

spanners (that we are aware of) are Euclidean weighted UDGs [LCW02], unweighted UDGs [Bin20],31

and Euclidean weighted unit-square graphs [BFI23]. General string graphs could have much more32

*This is an extended abstract. All details are deferred to the full paper.
†Department of Computer Science, Dartmouth College. Email: hsien-chih.chang@dartmouth.edu.
‡Department of Computer Science, Dartmouth College. Email: jonathan.conroy.gr@dartmouth.edu
§Department of Computer Science and Engineering, University of Minnesota. Email: ztan@umn.edu
¶Institute of Science and Technology Austria. Email: dzheng@ista.ac.at
1For some classes of geometric intersection graphs, one can instead impose a natural weight on the edges—for example, a

unit-disk graph may have edge weights set to be the Euclidean distance between the disk centers. We are primarily concerned
with unweighted string graphs.
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complex interactions than UDGs. Unlike disks and squares, the strings may be piercing and thus permit33

non-local interactions like segments and rectangles; moreover, an n-vertex string graph may even require34

a representation (i.e. a drawing on the plane) with description complexity exponential in n [KM91].35

As a result, it might come as a surprise that a planar distance sketching structure still exists for general36

string graphs, even in the O(1)-distortion regime! Our main result vastly generalizes the previous spanner37

constructions on UDGs: every string graph admits an O(1)-distortion planar emulator. Philosophically38

speaking, our result suggests that metrics on string graphs are not so different from planar metrics.39

Theorem 1.1. For an absolute constant c, the following is true: For any unweighted string graph40

G, there is a planar graph H with V (H) = V (G), such that for every pair of vertices (u, v), we have41

δG(u, v)≤ δH(u, v, )≤ c ·δG(u, v). Moreover, if one is given a representation of G, the graph H can be42

computed in time polynomial in the description complexity of the representation.43

As one application, we can obtain (1+ϵ)-approximate distance oracles for string graphs, by combining44

(in a non-black-box manner) a result on distance oracles in planar graphs [CCL+23]with our Theorem 1.1.45

46

Corollary 1.2. For any n-vertex string graph G and any ϵ > 0, there is a data structure using Oϵ(n)47

words of space2 such that, given any two query vertices u, v ∈ V (G), in Oϵ(1) time we can return a48

distance estimate δ̃(u, v) such that δG(u, v)≤ δ̃(u, v)≤ (1+ ϵ) ·δG(u, v) +O(1).49

Parallel work. A similar result to our Theorem 1.1 has recently been announced3 by James Davies:50

every (unweighted) string graph is quasi-isometric4 to an (unweighted) planar graph. This work was51

done independently and concurrently.52

2 Technical Overview53

We begin by describing a natural, but flawed approach at creating a planar54

emulator for a string graph GS on a set of strings S. Let S and T be two55

strings that cross at some point x ∈ R2. The operation of shattering of S at56

x can be thought of as cutting apart S at x to produce two new strings S157

and S2, both of which touch T but neither of which crosses T at x . Given a58

set of strings S, we could transform their intersection graph GS into a planar59

graph by the following procedure: for every pair of strings that cross, shatter one of them to remove60

the crossing.5 Each shattering procedure removes a crossing at the cost of changing distances by an61

O(1) amount — the single string S is turned into two strings S1 and S2 which are within distance 2 of62

each other in the new intersection graph (as witnessed by the path [S1, T, S2]). After all crossings are63

removed by the shattering procedure, it is not difficult to see that the resulting intersection graph on the64

shattered strings S′ is planar. However, distances on the shattered graph GS′ could look very different65

than on the original GS. When the intersection graph G is a clique (for example), some string S might66

cross every other string, so S could be shattered into Θ(n) pieces, and these pieces could be at distance67

Θ(n) from each other. In this case, shattering doesn’t seem helpful in producing a planar emulator.68

2we work in the Word RAM model
3see the 31th minute mark of https://youtu.be/U1puthN5tq8?t=1861
4This is essentially equivalent to the existence of a O(1)-distortion emulator, up to some quirks in the definition. A

quasi-isometry implies the existence of a O(1)-distortion emulator, and our proof of our emulator implies a quasi-isometry.
5When a string S is shattered into S1 and S2, one of the strings S1 or S2 is chosen arbitrarily to represent S, and the other

string is treated as a Steiner vertex.
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Figure 1. (Left) A string graph G; (Middle) A partition of R2 into clusters provided by Lemma 2.1; (Right) A planar emulator
for G obtained by contracting all clusters and adding stars.

On the other hand, it is easy to find a planar emulator H when G is a clique: just take H to be a star69

graph. This gives us the following hope: we could try to remove some crossings using the shattering70

procedure (only shattering each string O(1) times), and hope that the remaining intersections happen in71

local “clusters” that can be replaced with stars.72

Goal. Given strings S, find a partition of R2 into connected clusters such that (1) each string73

intersects only O(1) clusters, and (2) for each cluster C , the strings touched by C are all74

within O(1) distance of each other in GS.75

Given such a partition, it is fairly straightforward to find a planar emulator, by shattering along the76

boundary of each cluster and then replacing each cluster with a star; see the proof of Theorem 1.1 below77

for the details, and Figure 1 for an example. Now, a key insight is that our stated goal is reminiscent of78

the notion of scattering partition introduced by Filtser for general graphs [Fil24].79

Scattering partition. A graph G has a O(1)-scattering partition if, for any distance ∆> 0,80

there is a partition of V (G) into connected clusters such that (1) any path of length ∆81

intersects only O(1) clusters, and (2) each cluster has diameter O(∆).82

Our intuition is that the scattering partition with ∆ = O(1) is similar to the partition in our goal.83

Unfortunately, scattering partition is only known for some very restricted graph classes, including trees,84

cactus graphs [Fil24], and series-parallel graphs [HL22]. Recently, however, Chang et al. [CCL+23]85

constructed a very similar (but slightly weaker) object, the shortcut partition, for every planar graph (and86

later for every minor-free graph [CCL+24]). Our main technical contribution, summarized in Lemma 2.1,87

is to delicately adapt the planar construction of [CCL+23] to (essentially) achieve our goal.88

Lemma 2.1. There is a constant α= O(1) such that, given a set of strings S, there is a partition of R2
89

into connected regions C called clusters, such that:90

• [Low-hop.] Define the cluster graph Ĥ to be the (planar, unweighted) string graph obtained by91

shattering along the boundary of every cluster in C and then contracting the strings in each cluster.692

For any string S ∈ S, if S intersects clusters C1 and C2, then δĤ(C1, C2)≤ α.93

• [Diameter.] For any cluster C ∈ C, if strings S1, S2 ∈ S both intersect C , then δGS
(C1, C2)≤ α.94

From here we can prove Theorem 1.1.95

6More formally, Ĥ is the graph with vertex set C where an edge exists between clusters C1, C2 ∈ C iff C1 and C2 touch (that
is, ∂C1 ∩ ∂C2 ̸=∅) and there is some string S ∈ S that intersects both C1 and C2. It is not hard to see that H is planar.
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Proof (of Theorem 1.1): Let C be the set of clusters, α be the constant, and Ĥ be the (planar) cluster96

graph from Lemma 2.1. Initialize H ← Ĥ. For every string S ∈ S, create a new vertex in H representing97

S, and add an edge between this vertex and an arbitrary cluster C ∈ V (Ĥ) that intersects S; see Figure 1.98

Set all edge lengths of H to 2α. We claim H is a O(1)-distortion planar emulator for the string graph GS.99

First we prove an upper bound on distances in H: for any u, v ∈ S, we claim δH(u, v)≤ O(1)·δGS
(u, v).100

It suffices to show that for every edge (u, v) in GS, we have δH(u, v)≤ O(α2) = O(1). Indeed, the fact101

that u∩ v ̸=∅ implies there is some cluster C ∈ C that intersects both u and v. The [low-hop] property102

implies that there is a path in H between C and u (resp. C and v) with O(α) hops; as each edge has103

length 2α, the path has length O(α2) = O(1) so we are done.104

Now we prove a lower bound on distances in H: for any u, v ∈ S, we claim δGS
(u, v) ≤ δH(u, v).105

For any two string u, v ∈ S, let PH = [u, C1, C2, . . . , Cℓ, v] be a shortest path in H between strings u and106

v; note that every vertex other than the endpoints represents some cluster Ci ∈ C. As every edge in107

H has length α, there are ∥PH∥
2α edges in PH .7 Now, for each cluster Ci along the path PH , let ci ∈ S be108

an arbitrary string that intersects Ci, and let P be the shortest path in the string graph GS that walks109

from u to c1, then to c2, and so on until reaching v. We claim that ∥P∥ ≤ ∥PH∥. It suffices to show110

that, for any ci and ci+1, we have δGS
(ci , ci+1) ≤ 2α. Indeed, the edge (Ci , Ci+1) ∈ E(H) implies that111

there is some string c′ that intersects both clusters Ci and Ci+1, and the [diameter] property implies that112

δGS
(ci , ci+1)≤ δGS

(ci , c′) +δGS
(c′, ci+1)≤ 2α. □113

2.1 Some intuition for the proof of Lemma 2.1114

Dealing with a path. First observe that Lemma 2.1 is easier to prove in the special case where the115

intersection graph GS consists of a shortest path π (called the “spine”) together with some strings within116

O(1) distance of π. We start by selecting a set P of well-separated strings along π: add the first string on117

π to P, then walk O(1) steps along π and add the next string to P, and repeat. For every string P ∈ P,118

we create a cluster CP , where we promise that CP will only intersect strings within O(1) distance from P.119

(The precise definition of the clusters is somewhat involved, but one should roughly think of a Voronoi120

partition according to distances in GS.) Each cluster CP satisfies the [diameter] property. Moreover, it121

follows from the fact that π is a shortest path that any string S intersects only O(1) clusters.122

Partition into paths. To prove Lemma 2.1 on general string graphs, we aim to first partition R2 into123

spined clusters C where (1) every string intersects few spined clusters, and (2) for each spined cluster C ,124

the strings intersecting C consist of a shortest path plus strings within O(1) distance of the path.8 To do125

this, we follow the algorithm of [CCL+23] (which itself builds on [BLT07]) for planar graphs. To begin,126

they select an arbitrary vertex v on the outer face and initialize π to be a O(1) neighborhood around127

v. They then repeatedly perform the following process: add π to the set of spined clusters C; delete128

all vertices in π; then look at the two external edges adjacent to π, connecting π to vertices v′1 and v′2,129

and set π to be the shortest path from v′1 to v′2 plus all vertices within O(1) distance of this path. In this130

way, π is a “thick path” that acts as a separator as it moves across all vertices in the outer face. We can131

perform a similar idea in string graphs, albeit with technical complications.9 The “separator” property132

of π guarantees that each string S can intersect only 2 spined clusters (otherwise S would be deleted).133

There may be still be parts of the graph which are not covered by any spined cluster, so we recurse in a134

manner similar to [CCL+23].135

7We use the notation ∥P∥ to mean the total (weighted) length of path P.
8By the argument above, these spined clusters are easy to deal with, and can be partitioned independently. For technical

reasons, we can’t actually find these spined clusters, but this is the intuition.
9One key observation is that, even though the path in a string graph does not act as a separator, the path together with its

neighbors acts a separator. Another idea is that, in order to ensure all clusters are disjoint, we can shatter along the boundary
of π and compute shortest paths in this shattered graph.
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1 Introduction6

A fundamental concept in the study of optimization problems is the notion of a set system (also known as a7

hypergraph). In the most general sense, a set system (U ,R) is a tuple containing a universe U of elements and a8

family R of subsets of U . A support graph of a set system (U ,R) is an undirected graph H on the elements of U9

such that for every set R in R, the subgraph HR of H induced by the elements of R is connected. One perspective is10

to view support graphs as the connectivity analog of other well-studied notions of sketches: sparsifiers for cuts,11

spanners for distances, and coresets for clustering.12

Naturally, we would hope the sketch to retain properties of the original structure, perhaps more. Van Cleem-13

put [18] and Voloshina and Feinberg [19] used the existence of a planar support graph to give meaningful notion14

of planarity in the hypergraph setting. As such, support graphs have seen interest in (hyper)graph drawing15

community [11, 12, 4]. In the realm of optimization, Pyrga and Ray [15] used support graphs to construct16

linear-sized ϵ-nets for several set systems with bounded VC dimension, including halfspaces in R3 and pseudodisks17

(more generally, r-admissable regions) in R2. Here the support graphs were required to be sparse (i.e. with linearly18

many edges) in order to bootstrap existing ϵ-net sizes down to O( 1
ϵ ). The existence of linear-sized ϵ-nets has many19

applications; for example, O(1)-approximation for set cover and hitting set problems can be obtained using multi-20

plicative weight updates [3] (see also [6, 13]). Later on support graphs that are planar were used by Mustafa and21

Ray [14] to show a PTAS for various optimization problem in the geometric setting. Instead of ϵ-net, they exploited22

the existence of sublinear-size separators in planar graphs to show that an Oϵ(1)-swap local search algorithm gives23

a (1+ ϵ)-approximation for minimum geometric hitting set. The same paradigm of analyzing local search with24

separators on planar support was extended to other problems, such as maximum independent set and generalized25

set cover (including dominating set and hitting set) in pseudodisks and non-piercing regions [5, 7, 9, 16]. More26

recently, Roy [1] used planar supports to design a PTAS for covering the boundary of a simple orthogonal polygon27

with rectangles. (A survey on the many use of support graphs can be found in Raman and Singh [17].)28

Distance ball systems. The existence of support graphs that are planar are so far almost entirely restricted29

to set systems that are pseudodisks [15] and their generalizations [16] (with the exception of Roy [1], which30

works with a special system within orthogonal polygons). For piercing systems like axis-parallel rectangles, there31

are configurations1 where no planar support can exist. Consequently, support graphs were viewed as objects32

whose existence is only guaranteed when the underlying system is planar-like in some way. Our goal of this33

article is to shift this narrative: instead of focusing on planarity, a support graph of set system (U ,R) is really a34

connectivity sketch that exists for every graph G on U — as long as the sets in R are defined to be distance balls35

on G. Both planarity and sparseness come as a byproduct of the fact that support graphs can be constructed as36

a minor of G. (See Theorem 1.1 for a precise statement.) This change in perspective is justified; while distance37

*Department of Computer Science, Dartmouth College. Email: reilly.browne.gr@dartmouth.edu.
†Department of Computer Science, Dartmouth College. Email: hsien-chih.chang@dartmouth.edu.

1Take k disjoint vertical rectangles and k disjoint horizontal rectangles and cross them in a grid-like pattern.
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balls are not pseudodisks or even non-piercing, distance balls capture many good properties of pseudodisks and38

can be viewed as a discrete analog. This connection can further be made concrete by the equivalence of planar39

metrics and polygonal domains: it is known that any system of geodesic disks in a polygonal domain in R2 can be40

represented as a system of distance balls in a planar graph, and vice versa [2]. Therefore we can interpret our41

result as constructing support graphs for geodesic disks in a polygonal domain.42

Terminologies. Let’s first introduce the terminology needed for concrete discussion. We consider the distance43

balls in an arbitrary directed graph. We refer to the digraph that our distance ball system lives on as the underlying44

graph G. Note that all of our results apply to distance balls in undirected graphs. A distance ball D can be defined45

using a pair (cD, rD) where cD is a vertex of G called the center, and a radius rD which is a real number. Distance46

ball D is then defined to be the set of all vertices v whose shortest directed path from cD has length less than rD.47

Given a system (U ,R), the dual system (R, U) has the elements of U treated as subsets of R: if element e in U48

is a member of set R in R in the primal system, then R is a member of set e in the dual system. We use the term49

dual support of (U ,R) to refer to a support graph of the dual system (R, U). (We give an example of a dual support50

in the left subfigure of Figure 1.) The dual of a system of distance balls can also be thought of as a system of51

distance balls on the same underlying graph with the edge orientations flipped. Thus, we do not differentiate the52

two types of supports, but instead describe the support for the dual system since it is conceptually easier.53

For other more complicated applications, sometimes we need to work with set systems that have two different54

types of sets. We define an intersection system (U ,R,B) as a set system where the elements are the sets of R and55

the family of sets is B, and we consider a set R ∈ R to be a “member” of set B ∈B if there is at least one element56

of U is in the intersection R∩ B. We define an intersection support to be a support graph of an intersection system57

(U ,R,B). In other words, an intersection support is an undirected graph H(R,B) where R and B are two families58

of subsets of some universe U and H(R,B) is a graph on R such that for every set B ∈B, all sets in R that contain59

a common element with B form a connected subgraph of H(R,B). (We give an example of an intersection support60

in the right subfigure of Figure 1.) Our notion of intersection support is equivalent to Raman and Ray’s notion of61

planar support for intersection hypergraphs [16], except we do not require that our support graphs be planar. In62

our case, we are looking at the situation where R and B are both sets of distance balls that lie in some underlying63

graph G. It is important to note that this is a generalization of both dual and primal support for the case of distance64

balls, since we can always consider the case where R is a set of radius-0 balls on every vertex to get a primal65

support and the case where B is the set of radius-0 balls on every vertex to get a dual support.66

R1

R2

R3

R4

R1 R2

R3

R4

v

v

BR1

R2
R3

R4

R5

R6

R1

R2

R3

R4

R5
R6

B

Figure 1. Left: A set system with a dual support. The red regions containing the violet vertex v form a connected subgraph in the support.
Right: An intersection system with an intersection support. The red regions intersecting blue set B form a connected subgraph in the support.

Main results. We start by giving a short proof that we can construct a dual support for a system of distance balls,67

by contracting the underlying graph into a minor.68

Theorem 1.1 (Dual Support). Any system of distance balls R on an underlying digraph G has a dual support69

H(R) such that if G does not contain a minor K with minimum vertex degree two2, then neither does H(R).70

After showing how to construct a forbidden-minor preserving dual support, we then show how to extend the71

technique to obtain an intersection support which also preserves forbidden minors.72

Theorem 1.2 (Intersection Support). Any system of distance balls (R,B) on an underlying graph G has an73

intersection support H(R,B) such that if G does not contain a (contraction-)minor K with minimum vertex degree74

two, then neither does H(R,B).75

2Unfortunately the min-degree requirement in the statement cannot be dropped. For example, if G is P2-minor-free, we have a set of disjoint
vertices. But there can be two balls centered on the same vertex, and thus connected in the dual support, which implies the existence of an
edge and thus the support is not P2-minor-free. Still the restriction is not severe as most of the interesting minor-free graph classes satisfy the
min-degree condition, including Kh-minors for h≥ 3, grid minors, and all forbidden minors for bounded-genus graphs.
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Applications of our results. An important property of our support construction is that we only ever contract76

edges that are within radius ∆ of a distance ball center cD, where ∆ is the maximum radius of all distance balls.77

This means that if G has polynomial expansion and we are considering constant radius balls, the support graph will78

also have polynomial expansion, allowing us to use the sublinear separators from Har-Peled and Quanrud [10]79

to get the same PTAS results for ∆-balls as Raman and Ray [16] achieved for non-piercing regions. If ∆ is not80

bounded by a constant, we can achieve the same when G is minor-free [20].81

Another natural use of these techniques is for problems relating to geodesic disks in a polygonal domain on82

some fixed genus surface. Again by the equivalence between planar metrics and polygonal domains mentioned [2],83

our techniques naturally give planar supports for geodesic disks in polygonal domains that lie in R2, as well as84

bounded-genus supports for geodesic disks in polygonal domains on bounded-genus surfaces.85

2 Existence of Dual Support86

To begin constructing the dual support for a system of balls R in a directed graph G, we will first modify G slightly87

and reduce to the case where every ball in R has the same radius. We will refer to the new graph as G′. We augment88

G by adding a new node corresponding to each ball in R. (For clarity, we refer to original vertices of G as vertices89

and new vertices corresponding to R as nodes.) For each ball R in R, we create a single node, xR, which has only90

one edge: an outgoing edge into cR, the center of the ball R. We give the edge a weight of rmax − rR, where rmax91

is defined to be maxR′∈R rR′ . This allows us to instead consider each R in R to be centered at xR, all with the92

same radius rmax, and the balls will still define the same set system R over the vertices in G. Finally, remove all93

vertices which are not contained in any ball of R and slightly perturb the edge weights (without changing any ball94

containment relations) so that every vertex v has a unique closest ball center in {xR : R ∈ R}.95

To build the dual support, we construct a Voronoi partition of G′ with respect to the set of nodes. A Voronoi96

partition F of a graph G′ with respect to a set of nodes S is a partition of VG′ into subsets such that for every97

node R ∈ S, there is a corresponding subset FR ∈ F which contains all vertices u in G′ for which d(xR, u) <98

minxR∈S\{xR} d(xR′ , u). For clarity, we will refer to each set FR in F as the Voronoi cell of R. In our case, we construct99

the Voronoi partition FR of G′ with respect to {xR : R ∈ R}, which we identify as R. Each cell FR in the Voronoi100

partition is a connected subset of G′ because for every vertex v in FR reachable from xR, the vertices on the shortest101

path between xR and v must belong to FR as well. Thus we can simply contract every F to a (contraction)-minor102

on only the nodes in R. This final graph H, we claim, is a dual support for (G,R).103

v

u

R

R′

Figure 2. An illustration of the proof to Lemma 2.1 that π can only pass through Voronoi cells of Rv . The purple region is the Voronoi cell FQ .

Lemma 2.1. For any vertex v in G′, the set of balls Rv ⊆ R that contain v must induce a connected subgraph in H.104

Proof: Consider any vertex v which is contained in at least two balls in R. Vertex v must be in the Voronoi cell FR105

of some ball R by construction of G′. We claim that for any other ball R′ of R that also contains v, there is a path106

from xR′ to v in G′, denoted as π, that only passes through Voronoi cells corresponding to balls that contain v.107

Since we have removed all vertices which have no incoming path from any ball, every vertex in G′ must be in108

some cell, so it suffices to show that every vertex along π is in a cell corresponding to a ball that contains v.109

Assume that some vertex u along π is contained in some Voronoi cell FQ corresponding to a ball Q that does110

not contain v. By definition of Voronoi cell, we have that d(xQ, u)< d(xR′ , u). By the definition of shortest paths,111

we know that d(xR′ , v) = d(xR′ , u) + d(u, v) . By triangle inequality, we then have the following:112

d(xQ, v)≤ d(xQ, u) + d(u, v)< d(xR′ , u) + d(u, v) = d(xR′ , v).113

However, d(xR′ , v)≤ rmax and d(xQ, v)> rmax hold since v is in R′ but not in Q. This is a contradiction. □114
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Proof (of Theorem 1.1): Construct H as described above. By Lemma 2.1, we know that H satisfies the definition115

of a dual support for system (VG ,R). It remains to show that if G has no minor K with minimum degree two,116

then neither can H. This is done by arguing that G′ has no such minors, and then the fact that H is a minor of G′117

concludes the proof.118

When constructing G′, we only perform two types of operations that would affect the existence of minors:119

deleting vertices, and adding in nodes {xR} of degree one. Let K be a minor model (as a collection of disjoint120

vertex subsets called supernodes) of G′ that has minimum degree two. If K only contains vertices but not nodes in121

G′, then K must appear in G as well (even though G′ was obtained by removing some vertices from G). So for K122

to not be a minor of G, at least one supernode η of K must contain some degree-1 xR that was added in G′.123

For an edge (η,η′) to exist in K , there must be a vertex/node u ∈ η and a vertex/node u′ ∈ η′ such that (u, u′)124

is an edge of G′. For η containing xR, it must be the case that xR is not the only vertex/node in η, since η must125

have degree at least 2. Because η is connected, the neighbor of xR is also in η and the (sole) edge incident on xR126

must be contracted. This, however, means that there can be no edge (xR, u′) in G′ that corresponds to an edge127

(η,η′) in K , so there is a minor K ′ isomorphic to K where xR was simply deleted and thus xR is not in η. Since this128

holds for all xR, there must be some minor isomorphic to K which is a minor of G, which is a contradiction. □129

3 Existence of Intersection Support130

We now shift focus to the notion of intersection support. We reuse the same construction of G′, but in this case131

adding nodes for both R and B. It is easy to show that if G (and our augmentation G′) is undirected, then the132

above trick of contracting the Voronoi partition with respect to R works: Consider each R node to be the center133

of a distance ball with radius 2rmax. If a ball R from R and B from B share a vertex in G, then the distance ball134

centered at xR in G′ of radius 2rmax must contain xB. By Lemma 2.1, we know that all R′ ∈ R containing xB must135

induce a connected subgraph in H, satisfying the definition of intersection support.136

3.1 Constructing an intersection support137

To construct an intersection support for a directed graph G, we first construct G′, using R ∪B as our distance138

balls for the node set. This means that we create a node for each D ∈ R∪B and delete all vertices that are not139

contained in any such D. We will additionally label each vertex (and node) with whether it is reachable from a140

ball in R (red) or if it is only reachable from balls in B (blue). Considering only the red vertices at first, we apply141

the same procedure of constructing the Voronoi partition with respect to R and contracting each cell. We refer to142

this graph as H. H should now only contain blue vertices, blue nodes and red nodes. To define edge weights of H,143

we will say that edges between two red nodes have infinite weight, whereas all other edges inherit the minimum144

weight whenever two edges merge due to an edge contraction. From here, we flip the orientations of every edge145

in H, including those incident on nodes. We then construct a Voronoi partition with respect to the red nodes R,146

and contract every cell, in this case yielding a graph H ′ only on the red nodes.147

We first show that H ′ is a support graph, as was done with Lemma 2.1 for the dual system. In the interest of148

space, the proof of Lemma 3.1 is in Section A of the appendix.149

Lemma 3.1. For every blue ball B ∈B in a system of distance balls (R,B) on an underlying graph G, the set of150

red balls RB ⊆ R that intersects B nontrivially must induce a connected subgraph in H ′.151

Proof (of Theorem 1.2): Construct H ′ described above as our intersection support. By Lemma 3.1, we know that152

H ′ satisfies the definition of our intersection support, so it remains to show that H ′ contains no (contraction)-minor153

with minimum degree two that is not also a minor of G. The construction of H ′ begins with the construction of a154

graph G′ almost equivalent to the one from Theorem 1.1, but for set system (G,R∪B). From the proof of Theorem155

1.1, we know that this G′ contains no minor K of minimum degree two. Since we only perform contractions and156

vertex deletions after constructing G′, we know that H ′ is a minor of G′, and thus also contains no minor K . □157

To conclude, any system of distance balls admit an intersection support which contains the same forbidden158

minors as the underlying graph. Both the dual and intersection supports can be computed in polynomial time.159

The primary bottleneck is the construction of the Voronoi partitions, which Erwig [8] showed to be computable in160

O(m+ n log n) time for graphs with m edges and n vertices.161
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A Proof of Lemma 3.1220

Proof (of Lemma 3.1): Assume that |RB| ≥ 2, as otherwise this holds trivially. Consider the closest red vertex221

u to B (smallest distance d(xB, u)). By the construction of H, u was contracted into some red node R ∈ R. In222

fact, R ∈ RB, |RB|= 0 by the definition of a red vertex. Since we always choose the minimum weight edge when223

merging, we know that xB must be in the Voronoi cell of R in H. It suffices to show that the remaining R′ ∈ RB \{R}224

must have a path to R within H ′[RB].225

Consider a vertex v in R′ ∩ B, and the shortest paths π(xR′ , v) and π(xB, v). We know that every vertex v′ in226

π(xR′ , v) must be in the G′ Voronoi cell of R′. We claim that every vertex v′ in π(xB, v) is either a red vertex in227

the G′ Voronoi cell of a ball in RB or a blue vertex in the H Voronoi cell of a ball in RB. This lets use the union of228

π(xR′ , v) and π(xB, v) to trace a path in H ′ from R′ to R.229

If v′ is in π(x ′B, v), then, by definition of shortest path, d(xB, v′) ≤ d(xB, v) and thus v′ is in B. With this in230

mind, we can split into cases based on whether v′ is a red vertex or a blue vertex.231

G′

R′

BR′′

v′

v

G′ H

BB

v
v

R′′
v′

R′′

Figure 3. Left: a red vertex v′ of π(cB , v) must lie in the Voronoi cell of a red ball R′ intersecting with B. Right: A blue vertex v′ of π(cB , v)
must lie in the H Voronoi cell of R′ intersecting with B.

• If v′ is red then v′ must be in the Voronoi cell (in G′) of some red ball R′′ that contains v′. Since v′ is also in232

B, this means that R′′ ∩ B ̸= 0, which implies that R′′ ∈ RB.233

• If v′ is blue, there must be some red vertex u′ which is of the smallest distance, d(v′, u′), among all red234

vertices. Since v is a red vertex, we know that d(v′, u′)≤ d(v′, v), hence:235

d(xB, u′)≤ d(xB, v′) + d(v′, u′)≤ d(xB, v′) + d(v′, v) = d(xB, v)≤ rmax236

This implies that u′ must be in B.237

Since u′ is red, u′ must be in some Voronoi cell of a red ball R′′ (in G′). After the orientation flip and the238

construction of H, u′ is contracted into xR′′ , and thus xR′′ must be the closest red node to v′. This means v′239

is in the R′′ Voronoi cell in H. Since u′ ∈ R′′ ∩ B, R′′ ∈ RB, thus every vertex in π(xB, v) is contracted into a240

red node which is in RB.241

This means that we can simply perform a walk from R to R′ in H ′ by going to the red ball corresponding to each242

vertex along π(xR′ , v) and then backwards along π(xB, v). Thus, RB must form a connected subgraph in H ′. □243
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Johnson-Lindenstrauss Lemma Beyond Euclidean Geometry

Chengyuan Deng∗ Jie Gao∗ Kevin Lu∗ Feng Luo∗ Cheng Xin∗

Abstract

The Johnson-Lindenstrauss (JL) lemma is a cornerstone of dimensionality reduction in Euclidean space, but
its applicability to non-Euclidean data has remained limited. This paper extends the JL lemma beyond Euclidean
geometry to handle general dissimilarity matrices that are prevalent in real-world applications. We present two
complementary approaches: First, we show the JL transform can be applied to vectors in pseudo-Euclidean space
with signature (p, q), providing theoretical guarantees that depend on the ratio of the (p, q) norm and Euclidean
norm of two vectors, measuring the deviation from Euclidean geometry. Second, we prove that any symmetric
hollow dissimilarity matrix can be represented as a matrix of generalized power distances, with an additional
parameter representing the uncertainty level within the data. In this representation, applying the JL transform
yields multiplicative approximation with a controlled additive error proportional to the deviation from Euclidean
geometry. Our theoretical results provide fine-grained performance analysis based on the degree to which the
input data deviates from Euclidean geometry, making practical and meaningful dimension reduction accessible
to a wider class of data. We validate our approaches on synthetic and real-world datasets, demonstrating the
effectiveness of extending JL transform to non-Euclidean settings. Full version in Neurips 2025.1

1 Introduction
The Johnson-Lindenstrauss (JL) lemma [1] stands as a cornerstone result in dimensionality reduction. It states
that random linear projection can reduce the dimensionality of datasets in Euclidean space, while approximately
preserving pairwise distances. Formally,

Proposition 1.1 (Johnson-Lindenstrauss Lemma). For any set of n points x1, x2, . . . xn in Rd and ε ∈ (0, 1), there
exists a map f : Rd → Rm, where m = O(log n/ε2) such that for any i, j ∈ [n],

(1− ε)∥xi − xj∥2 ≤ ∥f(xi)− f(xj)∥2 ≤ (1 + ε)∥xi − xj∥2 (1)

In modern algorithm design, the JL lemma is widely used as a key component or pre-processing step for
high-dimensional data analysis. In addition to effectiveness, one crucial reason for its significant impact is that the
JL lemma can be achieved by random linear maps, which are data-independent and easy to implement. Johnson-
Lindenstrauss Lemma has found numerous applications in machine learning, from the most immediate applications
in approximating all pairs distances (when the input data is high-dimensional), to approximate nearest neighbor
search [2], approximate linear regression [3], clustering [4, 5, 6, 7], functional analysis [8] and compressed sensing [9].

Note that two conditions must be met to apply the JL lemma: (1) the data points lie in high-dimensional
Euclidean space, and (2) the coordinates of all points are available. However, many real-world applications do not
satisfy these two conditions. First, the dissimilarity measures used in modern data analysis are often non-Euclidean
and sometimes even non-metric. Common examples include Minkowski distance, cosine similarity, Hamming distance,
Jaccard index, Mahalanobis distance, Chebyshev distance, and Kullback–Leibler (KL) divergence, etc. Psychological
studies have long observed that human similarity judgments do not conform to metric properties [10]. Second,
high-dimensional coordinates may be unavailable or costly to obtain, whereas pairwise dissimilarities are easier to
access. In recommendation systems, computing user or item embeddings can be expensive, while estimating pairwise
dissimilarities (e.g. from co-click or co-purchase data) is relatively efficient. To date, our understanding of the JL
lemma deviating from these two classical conditions mainly revolves around ℓp metrics and lower bound results.

In this paper, we study how to apply the Johnson-Lindenstrauss transform (a.k.a. random linear projection) in
non-Euclidean, non-metric settings. We consider the input as a dissimilarity matrix D of size n× n where Dij is
the dissimilarity between item i and j. We make only two assumptions for the dissimilarity measure: symmetric
(Dij = Dji) and reflexive (Dii = 0). Note that we do not require the triangle inequality to be satisfied, therefore the

∗Rutgers Uniersity, {cd751, jg1555, kll160, fluo, cx122}@rutgers.edu
1https://neurips.cc/virtual/2025/poster/118378

1



dissimilarity can be non-metric. In short, the input is a symmetric hollow dissimilarity matrix, and the expected
output is a low-dimensional embedding of the original dataset that approximately preserves pairwise distances.

The major challenge we encounter in this setting is two-fold. The first is to obtain good coordinates from a
generic input dissimilarity matrix to represent the data, before we can even apply the JL transform. Second, we
need a geometric characterization of the non-Euclidean non-metric setting, to show how different our setting stands
from Euclidean geometry, which the JL Lemma is based on.

Before we explain our results, we first mention existing lower bounds for dimension reduction in non-Euclidean
settings. JL Lemma considers Euclidean spaces only. Naturally, one asks whether such a result is possible for other
spaces. There are several non-trivial dimension reduction results for ℓ1 norm [11] and ℓp norm [12]. However, the target
embedding dimension for ℓ1, ℓp and nuclear norm is necessarily polynomial in n for constant distortion [13, 14, 15].
These lower bounds remind us that a worst-case guarantee on low distortion and logarithmic target dimension is not
possible. Rather, our results provide error analysis which depends on parameters characterizing how the input data
deviates from Euclidean geometry. In other words, we have fine-grained performance analysis.

Our Contributions. We present two approaches to recover coordinates that fit into the non-Euclidean
non-metric setting. For both approaches, we generalize the Euclidean norm ℓ2 to a new form to capture the input
data geometry, together with certain geometric parameters indicating how far it deviates from Euclidean geometry.
We give error analysis on the dissimilarity distortion, which may involve an additive term whose magnitude is
proportional to the geometric parameters.

At the heart of our first approach is the observation that any symmetric hollow matrix can be written as
the distance matrix of vectors in pseudo-Euclidean space [16, 17, 18]. Here the distance between two vectors
x = (x1, x2, ...xn) and y = (y1, y2, ...yn) is captured by a bilinear form of signature (p, q), which is defined as
⟨x, y⟩p,q =

∑p
i=1 xiyi −

∑p+q
i=p+1 xiyi. The squared (p, q)-distance between x and y is ∥x − y∥2p,q = ⟨x − y, x − y⟩.

When p = n, q = 0, it is the squared Euclidean norm. We will give a more detailed introduction later. At this point,
it suffices to interpret the parameter p resembling and q negating the Euclidean space. Our first result shows the
generalization of the JL lemma to the pseudo-Euclidean geometry.

Theorem 1.2. For any set of n points x1, x2, . . . xn in Rp,q and ε ∈ (0, 1), there exists a map f : Rp,q → Rp′,q′ ,
where p′, q′ = O(log n/ε2) such that for any i, j ∈ [n],

(1− ε · Cij)∥xi − xj∥2p,q ≤ ∥f(xi)− f(xj)∥2p′,q′ ≤ (1 + ε · Cij)∥xi − xj∥2p,q, (2)

where Cij =
∣∣∣ ∥xi−xj∥2

E

∥xi−xj∥2
p,q

∣∣∣.

Our second result takes a different route. We prove that a symmetric hollow matrix is also a matrix of generalized
power distances. Given two points x and y with respective radius rx and ry, the generalized power distance is
defined as ∥x− y∥2E − (rx + ry)

2, where ∥x− y∥2E denotes the Euclidean norm. This is the squared length of the
tangent line segments of two balls centered at x, y with radii rx, ry. Again, at this point, it suffices to interpret rx, ry
as a measure of deviation from Euclidean space, with both a geometric meaning and a statistical interpretation of
distance between points with uncertainties.

We show that any input symmetric hollow matrix D of size n can be written as the generalized power distance
matrix of n points {pi} with the same radius r =

√
|en|/2, where en is the smallest eigenvalue of the Gram matrix

of D. This linear algebra result may be of independent interest. Only when D is a Euclidean distance matrix, all
eigenvalues are non-negative and r = 0. Our second result follows from applying the JL transform on the ball
centers (i.e. {pi}). We obtain a (1 ± ε) multiplicative approximation of the generalized power distance with an
additive error of 4εr2.

Theorem 1.3. Given any n× n symmetric hollow dissimilarity matrix, D, with power distance representation by
{(pi, r)} where r =

√
|en|/2 and en is the smallest eigenvalue of Gram(D) = − 1

2CDC with C = 1− J/n and J is
an all 1 matrix, there exists a map f : Rn → Rm, where m = O(log n/ε2) such that for any i ̸= j ∈ [n],

(1− ε) Pow((pi, r), (pj , r))− ε4r2 ≤ Pow((f(pi), r), (f(pj), r))

≤ (1 + ε) Pow((pi, r), (pj , r)) + ε4r2.

To complement Theorem 1.3, we are able to extend the techniques in [19] and give a lower bound of Ω(log n/ε2)
on the target dimension to achieve the multiplicative and additive factors as mentioned. Note that m = Ω(log n/ε2)
matches the JL lemma lower bound.
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Experiments. We implement both methods of JL transform with respect to the above results and evaluate their
performances on 10 datasets. We observe that the results corroborate with our theoretical results, and outperform
classical JL transform consistently on non-Euclidean datasts. Our codes are on the Anonymous Github2.

2 Algorithms for Non-Euclidean Johnson-Lindenstrauss Transforms
Theorem 1.2 and Theorem 1.3 provide two ways of applying the random linear projection in non-Euclidean settings.
We present the algorithms for both cases below. Recall the input dissimilarity matrix D is symmetric and hollow.
As for computational complexity, both methods start with D and we necessarily need to recover the ‘coordinates’
first. This can be done by running the singular value decomposition (SVD) on the Gram matrix in O(n3) time. If it
happens that the coordinates are to be learned from a representation learning module, we can skip this part and
directly apply dimension reduction. When applying standard JL transform we use random projection of Gaussian
vectors. One can use any JL transform for example [20, 21, 22, 23, 24] for this purpose.

2.1 Pseudo-Euclidean JL Transform
We show how to obtain vectors X in Pseudo-Euclidean space such that the intervals square of xi, xj is precisely Dij .
We first perform centralization to obtain the Gram matrix B = Gram(D) = −CDC/2, where C = I − 1

n1n1
T
n is

the centering matrix and 1n is a vector of ones. Since −CDC/2 is a symmetric matrix, its eigenvalues are real,
denoted as λ1 ≥ λ2 ≥ · · · ≥ λn. We take p as the number of non-negative eigenvalues and q to be the number of
negative eigenvalues. p+ q = n. Further, suppose U ∈ Rn×n is the orthogonal vectors, we have

B = −CDC/2 = U Diag(λ1, · · · , λn)UT

Now we can recover the coordinates of the n elements as n-dimensional vectors. Specifically X is a matrix of
dimension n× n with the columns representing the coordinate vectors of the n points.

X = (x1, · · · , xn) = Diag(
√

|λ1|, · · · ,
√
|λn|) · UT

This way, we have B = −CDC/2 = XTΛX, with Λ = Diag(1, · · · , 1,−1, · · · ,−1) as a n× n diagonal matrix with
the first p diagonal elements as 1 and the remaining diagonal elements as −1. Equivalently, we have

Dij = (xi − xj)
TΛ(xi − xj) = ⟨xi − xj , xi − xj⟩.

Algorithm. Find the vectors X of n points in pseudo-Euclidean space following above steps. For each point
x in the embedding, split it into x(p) and x(q). Then, we use standard JL transform to project into Rp′ and Rq′

respectively where p′ and q′ are the specified target dimension. Return the projected points (x(p
′), x(q

′)) along with
their (p′, q′) signature.

2.2 Power distance JL Transform
Given two balls centered at p, q ∈ Rd, with radii rp, rq, we define the generalized power distance as:

Pow((p, rp), (q, rq)) = ∥p− q∥2E − (rp + rq)
2. (3)

Equation 3 measures the distance of the internal tangents between two disjoint circles (the tangent line that keeps
two circles on different sides. See the middle picture in Figure 1). Note that there is another second generalized
power distance between two circles centered at pi of radius ri given by ||p1 − p2||2E − (r1 − r2)

2, which measures the
distance of the external tangents between the circles (the tangent line that keeps two circles on the same side).

The key observation that allows for the JL transform is any symmetric hollow dissimilarity matrix can be written
as the matrix of power distances between n weighted points, formally as below.

Lemma 2.1. Given any n × n symmetric hollow dissimilarity matrix, D, we can rewrite D = E + 4r2(I − J)
where r ∈ R+, E is a Euclidean distance matrix, I is an n× n identity matrix, J = 1n1

T
n . More specifically E is a

Euclidean distance matrix if and only if 2r2 ≥ |en| where en is the least eigenvalue of Gram(D).

Algorithm. Find en, the smallest eigenvalue of the Gram matrix of D. Set r =
√

|en|/2. Add 4r2(J − I) to D
to find the new Euclidean distance matrix, E. Recover the Euclidean coordinates X ′ such that Eij = ∥x′i − x′j∥2.
Perform standard JL transform on X ′ to dimension m. Return the resulting points along with their radii r.

2https://anonymous.4open.science/r/Non-Euclidean-Johnson-Lindenstrauss-1673
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∥p− q∥2 − r2q
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2

Figure 1: Left: power distance from a point p to a ball at q of radius rq ; Right: power distance between two balls at points p, q with
radius rp and rq respectively

3 Experiments
In this section, we present experimental results of the proposed JL transforms in non-Euclidean settings with only
a dissimilarity matrix as input. First, we validate our theoretical results by showing the approximation error on
datasets that are highly non-Euclidean. Next, we evaluate the algorithms on real-world datasets, with the classical
JL transform as a baseline.

Datasets. We use two synthetic datasets that are made non-Euclidean: Random-simplex and Euclidean-ball.
At a high level, for the Random-simplex, given a dataset of size n, each point is constructed such that its first n− 1
coordinates form a simplex, while the final coordinate dominates the pairwise distances. This design induces a large
negative eigenvalue in the Gram matrix. The Euclidean-ball dataset, inspired by Delft’s balls [25], consists of n
balls with varying radii. The distance between two balls is defined as the minimal distance between any two points
on their surfaces, resulting in dissimilarities that violate the triangle inequality. For real-world data, We consider
three categories: genomics, image and graph data. The genomics data includes three cancer-related datasets from
the Curated Microarray Database (CuMiDa) [26]. Following the practice in prior work [18], we obtain dissimilarities
with entropic affinity. We also test two celebrated image datasets: MNIST and CIFAR-10, each with 1000 images
randomly sampled. We use the measures mentioned in [27] to calculate the dissimilarities. The graph datasets are
selected from the SNAP project. Details are shown in Table 1, with more to follow in Appendix.

Dataset Simplex Ball Brain Breast Renal MNIST CIFAR10 Email Facebook Mooc
Size 1000 1000 130 151 143 1000 1000 986 4039 7047

# {λ < 0} 900 887 53 59 57 454 399 465 1566 268
Metric ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Table 1: Non-Euclidean/Non-metric Datasets used in experiments

Performance on Relative Error. We compare two proposed JL transforms with the classical JL transform
on all datasets and report the relative error, which is defined as the maximum among |Dij−D̂ij |

Dij
for all (i, j) pairs.

D̂ij is the dissimilarity matrix obtained from any JL transform. It is a suitable metric because all three algorithms
have different theoretical guarantees, but the end goal is always preserving pairwise dissimilarities. In Table 2 we
show both the worst-case (defined above) and average relative error. A smaller value indicates better performance.

We observe JL-PE performs the best for genomics data and JL-power performs the best for the rest, on both
metrics. The significant improvement implies when the JL transform matches with geometry, we can expect really
good results. The image datasets report inf for JL because different images are projected to the same point. In a
few cases Jl-PE has slightly worse relative error than JL, but note that this might be the outcome of really large
factor C, which the performance of JL-PE is based on.

Method Simplex Ball Brain Breast Renal MNIST CIFAR10 Email Facebook MOOC
JL Max 6.47e5 5.97e5 1.02e12 7.09e10 3.42e12 inf inf 3.85e4 1.18e6 2.94e5

JL-PE Max 1.11e6 5.31e5 8,21e4 262.20 2.37e4 8.47e5 2.24e6 3.24e6 2.51e7 1.35e7
JL-Power Max 109.18 12.102 3.11e7 1.92e6 1.17e8 85.76 55.74 781.45 82.74 24.22

JL Ave 442.65 43.78 1.11e9 9.86e7 1.50e9 inf inf 15.64 12.62 39.83
JL-PE Ave 47.59 23.71 8.16 1.15 6.60 15.93 18.24 13.79 52.52 63.44

JL-Power Ave 13.52 1.002 3.73e4 3.12e3 5.57e4 1.47 1.61 1.60 1.32 2.04

Table 2: Max and Average Relative Error of All Datasets on Three JL Transforms.
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Computing Dominating Sets in Disk Graphs with Centers in Convex

Position∗

Anastasiia Tkachenko† Haitao Wang‡

Abstract

Given a set P of n points in the plane and a collection of disks centered at these points, the disk graph
G(P ) has vertex set P , with an edge between two vertices if their corresponding disks intersect. We study
the dominating set problem in G(P ) under the special case where the points of P are in convex position.
The problem is NP-hard in general disk graphs. Under the convex position assumption, however, we present
the first polynomial-time algorithm for the problem. Specifically, we design an O(k2n log2 n)-time algorithm,
where k denotes the size of a minimum dominating set. For the weighted version, in which each disk has
an associated weight and the goal is to compute a dominating set of minimum total weight, we obtain an
O(n5 log2 n)-time algorithm.

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in the plane, where each point pi ∈ P is assigned a radius rpi ≥ 0.
Let Dpi denote the disk centered at pi with radius rpi . The disk graph G(P ) has P as its vertex set, with
an edge between pi and pj if the two disks Dpi and Dpj intersect, i.e., |pipj | ≤ rpi + rpj , where |pipj | is the
Euclidean distance of pi and pj . We are interested in the dominating set problem in disk graphs. A dominating
set of G(P ) is a subset S ⊆ P such that every vertex in G(P ) is either in S or adjacent to a vertex in S. The
dominating set problem is to find a dominating set of minimum cardinality. In the weighted case, each point of
P has a weight, and the goal is to find a dominating set minimizing the total weight. The problem is NP-hard
even in unit-disk graphs [8]. Approximation algorithms have been proposed, e.g., [3, 9, 12,16].

Convex position setting and previous work. In light of the above hardness results, exploring structured
settings that may allow efficient algorithms is of particular interest. In this paper, we consider the dominating
set problem in disk graphs in a convex position setting where every point of P appears as a vertex of the convex
hull of P . This setting models deployments along perimeters (e.g., fences, shorelines, or rings of sensors). We
emphasize that while the points of P are in convex position, the disks themselves may not be. In convex
position, Tkachenko and Wang [20] gave O(n3 log2 n) and O(kn log n) algorithms for weighted and unweighted
dominating set in unit-disk graphs (with k the optimum size). Other results in the convex position setting
for problems that are NP-hard in general include: maximum independent set problem solvable in O(n7/2)
time [20]); the k-center problem solved by Choi, Lee, and Ahn [7] in O(n3 log n) time, and its discrete variant in
O(n2 log2 n) [20]; Singireddy, Basappa, and Mitchell gave an O(n4k2) time solution for dispersion problem, which
later was improved to O(n7/2 log n) [18,20]. Even classically easy problems have tailored treatments here, e.g.,
the linear-time Voronoi diagram construction of Aggarwal, Guibas, Saxe, and Shor [1]. See also [4–6,15,17,19].

Our result. We study the dominating set problem in disk graphs under the convex position setting. While
polynomial-time algorithms are known for the unit-disk case [20], allowing disks of varying radii introduces
significant challenges (e.g., maximum clique for unit-disks and disk graphs [2, 8, 10, 11, 13, 14]). Nevertheless,
we attempt to extend the techniques of [20] to the general disk graphs. This proves far from trivial, as many
properties of the unit-disk case no longer hold. Even so, we uncover new structural observations and develop
novel algorithmic techniques. Consequently, we establish that the dominating set problem in disk graphs under
the convex position setting can be solved in polynomial time. Specifically, we present an O(n5 log2 n)-time
algorithm for the weighted case. Furthermore, given a size bound k, we can compute a minimum-weight
dominating set of size at most k (if one exists) in O(k2n3 log2 n) time. For the unweighted case, we design a
more efficient algorithm, achieving a running time of O(k2n log2 n), where k denotes the size of a minimum
dominating set. In particular, when k = O(1), our algorithm runs in O(n log2 n) time.

∗A full version of this paper has been submitted for review.
†Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA. anastasiia.tkachenko@utah.edu
‡Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA. haitao.wang@utah.edu
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2 Our algorithms

In this section, we present structural properties of dominating sets in G(P ) and sketch our algorithms. In
Section 2.1, we present the algorithm for computing a minimum-weight dominating set. Our approach is a
dynamic programming algorithm that leverages a key structural property established in Lemma 1. This property
enables us to decompose the original problem into smaller subproblems amenable to dynamic programming.
The minimum dominating set problem, Section 2.2, is solved similarly with improved efficiency using a greedy
strategy.

Notation. Let H(P ) denote the convex hull of P . We treat P as a cyclic sequence of the points ordered
counterclockwise along H(P ), that is P = ⟨p1, p2, . . . , pn⟩. We use a sublist to refer to a contiguous subsequence
of P . Multiple sublists are said to be consecutive if their concatenation is also a sublist. For any two points pi
and pj in P , we define P [i, j] as the sublist of P from pi counterclockwise to pj , inclusive. Note that if i = j,
then P [i, j] = ⟨pi⟩. We also denote by P (i, j] the sublist P [i, j] excluding pi, and similarly for other variations,
e.g., P [i, j) and P (i, j). For any two points pi, pj ∈ P , we define |DpiDpj | = |pipj | − (rpi + rpj ).

Structural properties. For a sublist α of P , we say that a point pi ∈ P dominates α if the disk Dpi intersects
Dp for all points p ∈ α. For two points pi, pj ∈ P , if Dpi intersects Dpj , then we also say that pi dominates pj
(and similarly, pj dominates pi). Suppose S ⊆ P is a dominating set of G(P ). Let A be a partition of P into
(nonempty) disjoint sublists such that for every sublist α ∈ A, there exists a point in S that dominates α. An
assignment is a mapping ϕ : A → S that assigns every sublist α ∈ A to exactly one point pi ∈ S such that pi
dominates α. For each pi ∈ S, we define the group of pi, denoted by Api , as the collection of all sublists α ∈ A
that are assigned to pi under ϕ. Depending on the context, Api may also refer to the set of points of P in all its
sublists. An assignment ϕ : A → S is line-separable if for every two points pi, pj ∈ S, there exists a line ℓ such
that the points of Api lie entirely on one side of ℓ, while the points of Apj lie on the other side. The following
lemma proves a line-separable property.

Lemma 1. Suppose S is an optimal dominating set of G(P ). Then there exists a partition A of P and a
line-separable assignment ϕ : A → S such that (1) for every point pi ∈ S, pi ∈ Api , i.e., the group Api contains
pi itself, and (2) any two adjacent sublists of A are assigned to different points of S.

For each center pi ∈ S, we call the sublist of Api containing pi the main sublist of pi. We further have the
following lemma, which will be instrumental in our algorithm design.

Lemma 2. Let S be an optimal dominating set of G(P ), and let ϕ : A → S be the assignment given by Lemma 1.
Then, S has a point pi whose group Api only has a single sublist (which is the main sublist of pi).

2.1 The weighted dominating set problem

In this section, we present our algorithm for computing a minimum-weight dominating set in the disk graph
G(P ). For each point pi ∈ P , let wi > 0 denote its weight. For any subset P ′ ⊆ P , define w(P ′) =

∑
pi∈P ′ wi.

We consider the following bounded-size problem: Given an integer k, find a dominating set S ⊆ P of minimum
total weight in G(P ) subject to |S| ≤ k. Solving this problem with k = n yields a minimum-weight dominating
set for G(P ). Let W ∗ denote the total weight of a minimum-weight dominating set of size at most k.

Algorithm overview. Our algorithm is a dynamic program with k iterations. In each t-th iteration, 1 ≤ t ≤
k, we compute for each point pi ∈ P a set Lt(i) of O(n2) sublists of P , with each sublist L ∈ Lt(i) associated
with a value w′(L) and a subset SL ⊆ P , such that the following algorithm invariants are maintained: (1)
w(SL) ≤ w′(L); (2) SL dominates L; (3) pi ∈ SL; (4) |SL| ≤ t. Define Lt = ∪pi∈PLt(i).
The following notation will be used in the rest of this paper.

Definition 1. For two points pi, pj ∈ P (pi = pj is possible), define aji as the index of the first point p of P

counterclockwise from pj such that |DpiDp| > 0, and bji the index of the first point p of P clockwise from pj such

that |DpiDp| > 0 (if |DpiDpj | > 0, then aji = bji = j). If |DpiDp| ≤ 0 for all points p ∈ P , then let aji = bji = 0.

Algorithm description. Initially, t = 1, and our algorithm computes two indices aii and bii as defined in
Definition 1 for each pi ∈ P . We will show in Lemma 4 that this can be done in O(n log2 n) time. Then, for
each pi ∈ P , let L = P (bii, a

i
i), SL = {pi}, w′(L) = wi, and L1(i) = {L}. Obviously, all algorithm invariants

hold for L. This completes the first iteration of the algorithm.
Suppose that for each t′, 1 ≤ t′ ≤ t − 1, we have computed a collection Lt′(i) of O(n2) sublists for each

pi ∈ P , with each sublist L ∈ Lt′(i) associated with a value w′(L) and a point set SL ⊆ P , such that the
algorithm invariants hold for L, i.e., w(SL) ≤ w′(L), SL dominates L, pi ∈ SL, and |SL| ≤ t′. The t-th iteration
of the algorithm works as follows. For each point pi ∈ P , we perform the following procedures.
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Figure 1: Illustrating the relative posi-
tions of points of P (only their indices are
shown): the circle represent H(P ).

Counterclockwise/clockwise processing procedures. For each
other point pj ∈ P , we proceed as follows. For each t′ with 1 ≤ t′ ≤ t− 1,
and each point pz ∈ P [i, j], we do the following. Refer to Figure 1. We
first perform a minimum-value enclosing sublist query on Lt′(i) to find the
sublist L1 ∈ Lt′(i) of minimum w′(L1) such that P [i, z] ⊆ L1. Let pz1 be
the counterclockwise endpoint of L1. Then we perform another minimum-
value enclosing sublist query on Lt−t′ to find the sublist L2 ∈ Lt−t′ of
minimum w′(L2) with P [z1 + 1, j] ⊆ L2. Let pz2 be the counterclockwise
endpoint of L2. Next, we compute the index az2+1

i . By construction,
the union of the following four sublists are consecutive and thus form a
sublist of P : P (bii, a

i
i), L1, L2 and P (z2, a

z2+1
i ). Denote this combined

sublist by L(t′,m), or L for simplicity. We set SL = SL1
∪ SL2

and
w′(L) = w′(L1) + w′(L2). Among all such sublists L(t′,m) with 1 ≤ t′ ≤
t − 1 and pz ∈ P [i, j], we keep the one with minimum w′(L(t′,m)) and
add it to Lt(i).
Symmetrically, we perform a clockwise processing procedure for pj , which also adds at most one sublist to Lt(i).

i

x

aii bii

Lx

L

y
Ly

Figure 2: Illustrating Lx, Ly , and L.

Bidirectional processing procedures. We also perform bidirec-
tional processing procedures for pi. For each pair of points (px, py) such
that py, pi, px are in counterclockwise order along H(P ), we do the fol-
lowing for each t′ with 2 ≤ t′ ≤ t − 1. Refer to Figure 2. We per-
form a minimum-value enclosing sublist query on Lt′(i) to find the sublist
Lx ∈ Lt′(i) of minimum w′(Lx) such that P [i, x] ⊆ Lx. Similarly, we per-
form a minimum-value enclosing sublist query on Lt+1−t′(i) to find the
sublist Ly ∈ Lt+1−t′(i) of minimum w′(Ly) such that P [y, i] ⊆ Ly. By
definition, the union of P (bii, a

i
i), Lx, and Ly are consecutive and thus form

a sublist of P , denoted by L(x, y, t′) or simply L. We set SL = SLx
∪ SLy

and w′(L) = w′(Lx)+w′(Ly)−wi. For a fixed pair (px, py), among all sublists L(x, y, t′), 2 ≤ t′ ≤ t−1, we keep
the one with minimum w′(L(x, y, t′)) and add it to Lt(i). In this way, the bidirectional processing procedure
for pi adds O(n2) sublists to Lt(i).
After the k-th iteration, among all sublists of Lk that are P , we find the one L∗ of minimum w′(L∗) and return
SL∗ as our optimal dominating set of size at most k. If no sublist of Lk is P , then we report that a dominating
set of size at most k does not exist.

Algorithm correctness, time analysis, and implementation. The following lemma establishes the cor-
rectness of the algorithm. The proof (by induction on t) is based on Lemmas 1,2 (see the appendix for details).

Lemma 3. SL∗ is an optimal dominating set and W ∗ = w′(L∗).

As for the time analysis, in the t-th iteration, 1 ≤ t ≤ k, the algorithm performs O(tn3) minimum-value enclosing
sublist queries: Given a sublist L of P , compute the minimum value sublist containing L in a set L of sublists.
It was shown in [20] that each of these operations can be performed in O(log2m) time after an O(m logm) time
preprocessing with m = |L|. In addition, in the t-th iteration, the algorithm performs O(tn2) operations to
compute the indices aji and b

j
i . To this end, the following lemma provides a data structure.

Lemma 4. We can construct a data structure for P in O(n log2 n) time such that the indices aji and bji can be
computed in O(log2 n) time for any two points pi, pj ∈ P .

The total size of the involved sets of Lt is O(n3), therefore the t-th iteration of the algorithm takes O(tn3 log2 n)
time. As there are k iterations, we conclude with the following theorem, which in turn leads to the corollary.

Theorem 1. Given a number k and a set of n weighted disks whose centers are in convex position in the plane,
we can find in O(k2n3 log2 n) time a minimum-weight dominating set of size at most k in the disk graph, or
report that no such dominating set exists.

Corollary 1. Given a set of n weighted disks whose centers are in convex position in the plane, we can compute
a minimum-weight dominating set in the disk graph in O(n5 log2 n) time.
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2.2 The unweighted case

For the unweighted case, the goal is to compute a smallest dominating set in the disk graph G(P ). By setting the
weights of all points of P to 1 and applying Corollary 1, one can solve the unweighted problem in O(n5 log2 n)
time. Below, we provide an algorithm of O(k2n log n) time, where k is the size of the smallest dominating set.

Algorithm description. We still proceed in iterations t = 1, 2 . . .. In each t-th iteration, we compute for
each pi ∈ P a set Lt(i) of O(t) sublists, with each sublist L associated with a subset SL ⊆ P , such that the
following algorithm invariants are maintained: (1) SL dominates L; (2) pi ∈ SL; (3) pi ∈ L; (4) |SL| ≤ t. Define
Lt = ∪pi∈PLt(i). Hence, |Lt| = O(nt).

Let k be the smallest dominating set size. We show that after k iterations, Lk is guaranteed to contain a
sublist that is P . As such, if a sublist that is P is computed for the first time in the algorithm, then we can
stop the algorithm.

Initially, t = 1, and our algorithm does the following for each pi ∈ P . We compute L = P (bii, a
i
i), and set

SL = {pi}. We let L1(i) = {L}. Obviously, all algorithm invariants hold for L.
In general, suppose that for each t′ ∈ [1, t − 1], we have computed a collection Lt′(i) of O(t′) sublists for

each pi ∈ P , with each sublist L′ ∈ Lt′(i) associated with a subset SL′ ⊆ P , such that the algorithm invariants
hold, i.e., L′ is dominated by SL′ , pi ∈ SL′ , pi ∈ L′, and |SL′ | ≤ t′. The t-th iteration works as follows. For
each point pi ∈ P , we perform the following procedures that now incorporate greedy strategies.

Counterclockwise/clockwise processing procedures. For each point pi ∈ P , for each t′ ∈ [1, t−1], we
do the following. One can still refer to Figure 1 (but the notation z can be ignored). By our algorithm invariants
for t′, every sublist of Lt′(i) contains pi. We first find the sublist of Lt′(i) whose counterclockwise endpoint is
farthest from pi (in the counterclockwise direction). Let L1 denote the list and let pz1 be the counterclockwise
endpoint of L1. We then perform a counterclockwise farthest enclosing sublist query on Lt−t′ to compute a
sublist containing pz1+1 such that its counterclockwise endpoint is farthest from pz1+1 (in the counterclockwise
direction). Let L2 be the sublist and z2 the counterclockwise endpoint of L2. Next, we compute the index
az2+1
i . By construction, the union of the following four sublists is a (contiguous) sublist of P : P (bii, a

i
i), L1, L2,

and P (z2, a
z2+1
i ). Denote this combined sublist by L(t′), or simply L. We set SL = SL1 ∪ SL2 . Among the

O(t) sublists L(t′) computed above for all t′ ∈ [1, t− 1], we keep the one L whose counterclockwise endpoint is
farthest from pi and add it to Lt(i).

Symmetrically, we perform a clockwise processing procedure for pi.

Bidirectional processing procedures. For each point pi ∈ P , for each t′ ∈ [2, t − 1], we perform the
following bidirectional processing procedure. One can still refer to Figure 2 (but the notation x and y in the
figure can be ignored). We find the sublist Lx in Lt′(i) whose counterclockwise endpoint is farthest from pi
(along the counterclockwise direction), and the sublist Ly in Lt+1−t′(i) whose clockwise endpoint is farthest
from pi (along the clockwise direction). The following three sublists form a (contiguous) sublist of P : P (bii, a

i
i),

Lx, and Ly. Let L be the union of the above three sublists. We set SL = SLx ∪ SLy , and add L to Lt(i).
If any sublist L ∈ Lt is P , then we stop the algorithm and return SL as a smallest dominating set. Otherwise,
we continue on the next iteration.

Algorithm correctness, time analysis, and implementation. The following lemma demonstrates the
correctness of the algorithm, whose proof can be found in the appendix.

Lemma 5. If the algorithm first time computes a sublist L that is P , then SL is a smallest dominating set of
G(P ).

In each t-th iteration with 1 ≤ t ≤ k, we perform O(tn) operations for computing indices aji and bji and
O(tn) counterclockwise/clockwise farthest enclosing sublist queries: Given a point p ∈ P , find from a set L of
sublists a sublist containing p with the farthest counterclockwise/clockwise endpoint from p. We can construct
a data structure for L in O(m logm) time such that each such query can be answered in O(logm) time with
m = |L| [20]. Additionally, computing indices aji and b

j
i takes O(log2 n) time by Lemma 4. The total size of the

involved sets of L is O(tn). Hence, the total time of each t-th iteration is O(tn log2 n). As there are k iterations,
we conclude this section with the following theorem.

Theorem 2. Given a set of n disks whose centers are in convex position in the plane, a smallest dominating
set of the disk graph can be computed in O(k2n log2 n) time, where k is the smallest dominating set size.

4



References

[1] Alok Aggarwal, Leonidas J. Guibas, James Saxe, and Peter W. Shor. A linear-time algorithm for computing
the Voronoi diagram of a convex polygon. Discrete and Computational Geometry, 4:591–604, 1989. doi:

10.1007/BF02187749. 1

[2] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with minimum diameter
and related problems. Journal of Algorithms, 12(1):38–56, 1991. doi:10.1016/0196-6774(91)90022-Q. 1
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