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Abstract—Several aspects of managing a sensor network (e.g.,
motion planning for data mules, serial data fusion and inference)
benefit once the network is linearized to a path. The linearization
is often achieved by constructing a space filling curve inside the
domain. But existing methods cannot handle networks distributed
on surfaces of complex topology.

This paper presents a novel method for generating space
filling curves to 3D sensor networks that are distributed densely
on some two-dimensional geometric surface. Our algorithm is
completely distributed and constructs a path which gets uni-
formly, progressively denser as the path becomes longer. We
analyze the algorithm mathematically and prove that the curve
we obtain is dense. Our method is based on Hodge Decomposition
theorem and uses holomorphic differentials on Riemann surfaces.
The underlying high genus surface is conformally mapped to a
union of flat tori and then a proportionally-dense space filling
curve on this union is constructed. The pullback of this curve
to the original network gives us the desired curve. We show
via simulations that our method handles complicated topologies
and performs much better than the alternative methods on both
density and coverage rate.

I. INTRODUCTION

In this paper we consider sensors deployed in 3D space such
that the sensors are located densely on some underlying 2-
dimensional geometric surface of possibly complex topology.
This assumption models many practical scenarios in sensor
deployment — sensors are often attached to the surfaces of
terrains, exterior/interior of buildings [1], or other architectural
structures, for easy installation and energy supplies, etc. In
some other cases, the applications require sensors to be in-
stalled to monitor complex 3D structures, such as underground
tunnels [2], [3] or pipes [4]. Therefore the sensors are located
sparsely in 3D space but densely on a 2-dimensional surface
(the “boundary” of some 3D objects) of possibly complex
topology.

We are interested in innovative ways of managing such
sensor networks, in the regime of using mobile entities to aid
such management. Such mobile agents are often termed ‘data
mules’, since one of the major applications is to use a mobile
node to collect data from static sensors [5]–[9]. Static data
sinks suffer from the well known problem of ‘energy hole’,
as sensors near the sink are used more often and may run
out of battery sooner than others. Mobile data sinks could
get around this problem. Other applications of data mules
include battery recharge, event response, as well as generic

network health monitoring and repairment. Data mules may
piggyback on entities with natural mobility such as human,
animals or vehicles, but can also be dedicated mobile nodes
with either active (i.e., controlled motion) or passive motion
(e.g., carried away by wind or water current). The two-layer
architecture with static sensors ensuring high spatial coverage
and resolution and with mobile nodes allowing flexibity and
control thus created a lot of interest in recent years. See the
survey paper for a summary [10].

When the mobile nodes have active motion and are ded-
icated for improving the effiency of the sensor networks,
a central problem is the planning of its motion [6], [11]–
[15]. There are basically two major design principles. The
first one is mainly for handling dynamic, spontaneous events
and the data mules often behave in an on-demand manner.
Metrics to optimize often include the response delay and total
distance travelled. When the main objective is to minimize
response delay, the proposed solutions in the literature are
often variations of vehicular routing problem [16], which are
known to be NP-hard [17]. When the main objective is to
minimize the total distance travelled, the problem boils down
to various variants of traveling salesman problem [18], again,
an NP-hard one [19]. When multiple data mules are in place,
the coordination of them becomes much harder. Multi-TSP
problem is NP-hard and does not have good approximations.

The second design principle is for a sensor network with
dense sensor distribution and the target is to plan data mule
along a path that uniformly traverses the entire field. This
represents a periodic solution by which all sensors have
fair chance of being served by the data mule. It is better
for scenarios when sensors have the same data generation
rate, or when the sensor network requires a patrolling team
to continuously monitor its general functioning and health.
It can also be used for linear, logical operations in sensor
networks such as data fusion [20] or sequential inference. In
contrast to the data mule planning problem as listed above, this
problem can be abstracted as ‘linearization’ of the sensor field
which can substantially benefit from the underlying geometric
embedding.

The representative work in this direction is by
Ban et al. [21], in which they generalize the idea of a
space filling curve, often defined for a square, for a general
2D domain with holes. A space filling curve is a single curve



that recursively ‘fills up’ the square, when the number of
iterations goes to infinity [22]. For a sensor network with fixed
density, a space filling curve nicely tours around all sensors
with total travel length comparable to the traveling salesman
solution. When the sensor network has holes, however, the
space filling curve is broken and loses its nice properties.
For a domain with a single hole, Ban et al. [21] proposed to
map it to a torus such that a space filling curve can be easily
found — by essentially following a line bouncing back and
forth between the inner and outer boundaries. When there
are more than one holes, all but one holes are mapped to
‘slits’, and the path bounces on these slits too. It is rigorously
proved that this curve is dense, i.e., any point of the domain
will be covered by the path of sufficiently long; and the curve
has bounded density, i.e., it does not path through any point
too many times.

This space filling curve idea for data mule planning has a
number of advantages. First the density or coverage of the
curve is uniformly, steadily increasing with the length of the
path. This is one major difference from the traditional space
filling curves in squares, which visits all points in one quadrant
before moving to the next. The curve defined above takes
a coarse sample of the sensor field and increases density of
coverage progressively as the mule travels more. It is easy to
tailor the trip for a given travel budget. The second advantage
is that it allows multiple data mules to work with each other
easily. All of them can follow their respective space filling
curves, starting from different positions. These space filling
curves in theory do not overlap each other, and in practice
naturally complement each other.

However, one major limitation of the mechanism in
Ban et al. [21] is its applicability to 2D domains with holes
only. Terrains with holes can be handled via an additional
mapping to 2D but general surfaces with high genus (multiple
handles) cannot be handled. For underground deployment of
sensors for monitoring tunnels, handles appear very often and
we need a different scheme for generating the space filling
curves.

Our contribution. The main result in this paper is a new
linearization scheme for general sensor networks on 2D sur-
faces. We generate space filling curves with the same nice
properties as those in [21]. In particular, the curves have 1)
dense, progressive coverage – that as the curve gets longer,
the distance from any point to the curve decreases quickly; 2)
uniform density – a point is not visited more than a constant
number of times.

Moving from a 2D domain to a general 2D surface in 3D
really makes the problem harder. New ideas are needed to
make it work. The construction presented in this paper is new
for mathematicians too. It has been known that dense curve
exists but nobody knows how to compute one (even in the
centralized way). Therefore the contribution is not only on
the algorithm and application aspect, but also in the theoretical
perspective. The algorithms presented here can be easily made
to work in a distributed setting for a sensor network. We

remark that the problem will be much easier if one drops the
progressive density requirement. For that one can cut the 2D
surface into small patches each mapped to a 2D domain such
that previous methods can be applied.

II. RELATED WORK

In this section we quickly survey other ideas that generate
a path to visit all sensor nodes.
Space filling curves. Space filling curves have been used for
linear/serial fusion [20] in sensor networks when the sensors
are deployed uniformly in a square. There has been a heuristic
algorithm that generalizes a Hilbert curve for an ellipse [23].
Technically the curves generated by Ban et al. [21] and the
one in this paper are not going to completely fill up the surface
(since topologically a curve is different from a surface) – but
both the curves get infinitely denser as their lengths go to
infinity. Thus the curve gets infinitesimally closer to every
point.
Finding a tour. On a sensor network deployed in space,
generating a tour of the graph, depending on the requirement,
maps to either the Hamiltonian cycle/path problem or the
traveling salesman tour. The former requires each vertex be
visited exactly once and only the edges of the graph can be
used. The second tries to minimizes the total travel distance
instead. Both problems are NP-hard [19]. Euclidean TSP has
good approximation schemes [24], [25] but these solutions
suffer from two potential problems 1) lack of progressive
density; 2) cannot support multiple data mules easily.
Random walk. A practically appealing solution for visiting
nodes in a network is by random walk. The downside is that
we encounter the coupon collector problem. Initially a random
walk visits a new node with high probability. After a random
walk has visited a large fraction of nodes, it is highly likely
that the next random node encountered has been visited before.
Thus it takes a long time to aimlessly walk in the network and
hope to find the last few unvisited nodes. Theoretically for a
random walk to cover a grid-like network, the number of steps
is quadratic in the size of the network [26]. For a random walk
of linear number of steps, there are a lot of duplicate visits
as well as a large number of nodes that are not visited at
all. In the case of multiple random walks, since there is little
coordination between the random walks, they may visit the
same nodes and duplicate their efforts.

III. THEORY OF CONSTRUCTING SPACE FILLING CURVES

For ease of exposition, we start by summarizing our method
in this section. We then describe the theory behind our
constructed curve, and end this section with the proof that the
curve is dense. For the sake of completeness, we have provided
all the theoretical material necessary for understanding our
construction.

A. Informal discussion of techniques

Let us consider the mathematical problem of constructing a
dense curve with the desired property of proportional density
on a two dimensional manifold S. We first treat the surface as



a one dimensional complex manifold, also called a Riemann
surface. This basically means that locally our surface looks
like an open set in the complex plane, and the transition maps
from one such local “chart” to another are holomorphic.

With this point of view, we consider a holomorphic differ-
ential on our Riemann surface S. A holomorphic differential
is basically an assignment of a complex-valued holomorphic
function on each chart of the surface, that transforms line
elements in the correct way; in complex coordinates z and
z̄, it is a tensor of type (1, 0).

Using properties of certain special kinds of holomorphic
differentials called Strebel differentials, we partition our sur-
face into pieces, each of which is a flat torus with some holes
removed. Each such piece is mapped to a parallelogram with
slits (the boundaries of the holes map to the slits). In other
words, we view the surface S as a union of parallelograms
with slits, with slits being glued together in a certain way. This
change of coordinates is mathematically termed a “branched
covering”.

In these coordinates, our curve is just a straight line on
the cover. The slope of this line is either irrational, or chosen
randomly, depending on the position of the slits and the sides
of the parallelograms. Using several important and recent
results in Teichmüller theory, we can prove that this curve
is dense.

Note that although we partition the surface into pieces, we
do not cover one piece first and then move on to the next.
Instead our curve comes back into each piece infinitely often,
increasing the density proportionally to the length.

B. Theoretic Background

Conformal Atlas Suppose (S,g) is a surface with a Rieman-
nian metric g. Given any point p ∈ S, there is a neighborhood
U(p), one can find the isothermal coordinates (i.e., local
coordinates where the metric is conformal to the Euclidean
metric) (x, y) on U(p), such that

g = e2λ(x,y)(dx2 + dy2),

where the scalar function λ : U(p) → R is the conformal
factor function. The atlas consisting of isothermal coordinates
is called a conformal atlas. In the following discussion, we
always assume the local parameters are isothermal.
De Rham Cohomology De Rham cohomology theory is based
on the existence of differential forms with certain prescribed
properties. Suppose f : S → R is a function defined on S,
then its differential is given by

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy,

Suppose ω is a differential 1-form on the surface, which has
local representation as

ω(x, y) = f(x, y)dx+ g(x, y)dy,

The exterior differential operator d acts on ω,

dω(x, y) = (
∂g

∂x
− ∂f

∂y
)dx ∧ dy,

if dω = 0, then ω is called a closed 1-form. If there exists a
function h : S → R, such that ω = dh, then ω is called an
exact 1-form. Exact 1-forms are closed. The first De Rham
cohomology group of the surface consists of all non-exact
closed 1-forms,

H1(S,R) =
Ker d

Img d
,

where Ker, Img represent the kernel and image of the operator
d.
Hodge Decomposition The Hodge star operator on differential
forms are defined as
∗ω = ∗(f(x, y)dx+ g(x, y)dy) = (−g(x, y)dx+ f(x, y)dy).

A differential 1-form is called a harmonic 1-form, if

dω = 0, d∗ω = 0.

Hodge decomposition theorem claims that each cohomological
class has a unique harmonic form. All group consisting of
all the harmonic 1-forms is denoted as H1

∆(S,R), which is
isomorphic to H1(S,R).
Holomorphic Differentials Let {(Uα, zα} be the conformal
atlas, where the complex parameter zα = xα +

√
−1yα.

Suppose (Uβ , zβ) is another chart, the parameter transition
function is zβ(zα) is holomorphic, namely, it satisfies the
following Cauchy-Riemann equation:{

∂xβ
∂xα

=
∂yβ
∂yα

∂xβ
∂yα

= − ∂yβ
∂xα

Let Ω be a complex differential form with local represen-
tation

Ω(zα) = f(zα)dzα,

where f(zα) is holomorphic. A holomorphic 1-form can be
decomposed to a pair of conjugate harmonic real differential
1-forms,

Ω = ω +
√
−1∗ω,

where ω is harmonic. All the holomorphic differentials form
a group Ω(S), which is isomorphic to H1

∆(S,R).
Branched covering Let X,Y be compact connected topolog-
ical spaces. A continuous mapping f : X → Y is called a
branched covering if it is a local homeomorphism everywhere
except a finite number of “branch” points. In the complex
setting, this would mean that a branched covering is, locally
at a point p, upto composition by biholomorphic maps, of the
form z → zep , where ep > 1 for finitely many branch points,
and ep = 1 everywhere else.
Trajectory Structure and Strebel differentials Given a
holomorphic 1-form Ω on a genus g surface, there are 2g− 2
zero points. At each point p ∈ S, the tangent direction
dγ ∈ TMp is called a horizontal direction, if Ω(dγ) is real.
A curve γ ⊂ S is called a horizontal trajectory of Ω, if at
each point p ∈ γ, dγ is along the horizontal direction. The
horizontal trajectories through zeros of Ω are called critical
trajectories. Similar to holomorphic 1-forms, one can consider



quadratic differentials, which are tensors of type (2, 0) in
holomorphic coordinates. For quadratic differentials we define
a direction to be horizontal if the differential is positive along
it, and vertical if it is negative.

If the graph of vertical critical trajectories is compact,
the quadratic differential is called Strebel. In the group of
quadratic differentials, Strebel differentials are dense [27]. We
will use a holomorphic-1 form whose square is Strebel. This
will imply that the horizontal trajectories are closed curves.

C. Dense curve construction

We describe first the branched covering we use to construct
our curve, and then prove the density.

Branched covering from a Strebel differential Given a
Strebel differential Ω, the critical horizontal trajectories seg-
ment the surface to g connected components, denoted as
{Γ1,Γ2, · · · ,Γg}. Each connected component Γk is of genus
one with boundaries,

∂Γk = b1k + b2k + · · ·+ bnkk .

The Strebel differential Ω induces a flat metric on each Γk, the
integration of Ω on each boundary loop bik maps the boundary
loop to a straight line slit. Namely, then integration of Ω on
each Γk maps Γk to a flat torus with straight line slits.

The mapping from the surface to the flat tori are diffeo-
morphic except at the zero points. Locally, the mapping at
the zero points is similar to the complex power map z 7→ z2.
Therefore, the zero points are the branch points.

The curve we use Suppose each flat torus is R2/Γk, k =
1, 2, · · · , g. Here Γk represent lattice groups. Then we can
find a line ` on the plane, such that ` does not go through
any points in the union of lattices ∪kΓk, since this union is
countable. In particular if the lattice points are all rational then
a line with irrational slope would do; otherwise we chose a
random line. Denote the slope of ` as k.

On the“welded flat tori”, start from one point draw a line
γ with slope k. Then γ goes across the handles via the slits;
when it hits a slit it moves from one handle to another and
continues with the same slope k. We take care to chose k in
such a way that this line does not pass through the endpoint
of any slit. Again, this is easy to maintain since we only have
finitely many of these endpoints.

Theorem 3.1. Let γ be the curve constructed as above. Then γ
is dense and does not go through any point more than once.

Proof: Density would imply aperiodicity of γ, which in
turn would imply that γ does not pass through any point twice.
This is because on each torus, γ is a line with slope k, and
if it visited a point twice it must necessarily become periodic.
Thus it suffices to prove that γ is dense.

Density of such a curve follows from results in Teichmüller
theory [28], and we just sketch the proof. Essentially, as long
as the direction k does not contain a “saddle connection”,
which is a trajectory connecting two zeroes of the holomorphic
differential, it will be dense. In our case, if the slit coordinates

are rational, we choose an irrational k; otherwise we choose
a random k. In both cases, with probability 1 we will neither
hit the lattice points Γk nor the end points of the slits. This
guarantees density.

IV. DISCRETE ALGORITHM

Here we first describe for simplicity a centralized algorithm
that computes the dense curve. In the next subsection we show
how to implement the same algorithm in a distributed fashion.

A. Centralized algorithm

As mentioned in Section 1, we assume that the sensors are
densely deployed on some underlying surface S such that lo-
cally the sensors look like staying on a flat plane. Thus we can
apply existing algorithms to first come up with a triangulation
of the sensors that approximate the underlying surface S [29],
[30]. When sensors have geographical coordinates, we can
locally fit a plane at each node and apply the algorithm in [29].
If the sensors do not have geographical coordinates, we can
apply coordinate-free algorithm for finding a triangulation, as
in [30].

The surface is approximated by a triangular mesh M =
(V,E, F ), where V,E, F denotes the vertex, edge and face
sets respectively. We use vi ∈ V to represent a vertex,
[vi, vj ] an oriented edge from vi to vj , [vi, vj , vk] an oriented
face where vi, vj and vk are sorted counter-clock-wisely. We
assume the mesh is closed with genus g.

The algorithm pipeline is as follows: first, compute the
basis of the first homology group H1(M,Z); second, calculate
the dual basis of the first cohomology group H1(M,R);
third, obtain the basis of the harmonic 1-form group; fourth,
achieve the basis of the holomorphic 1-form group; finally,
by integrating a holomorphic 1-form one gets the required
branched covering map. Then we use the curve described in
the previous section. We proceed to describe algorithms for
each step involved.

Fig. 1: Cut graph.

a) Homology Group: First, the dual mesh M̄ =
(V̄ , Ē, F̄ ) of the input mesh M is constructed. Each vertex
vi ∈ V , face fj ∈ F and edge ek ∈ E corresponds to a face
v̄i ∈ F̄ , a vertex f̄j ∈ V̄ and and edge ēk ∈ Ē on the dual
mesh respectively.

Second, a spanning tree T̄ of the dual mesh M̄ is computed.
The cut graph G ⊂M is the union of edges, whose dual edges



are not in the spanning tree:

G = {e ∈ E|ē 6∈ T̄}.
Intuitively, the mesh M \G with the cut graph removed is a
topological disk. See Figure 1. Third, a spanning tree T of
the cut graph G is calculated. The complement of T in G is
a union of edges:

G/T = {e1, e2, · · · , e2g},
Each edge ei when included in the spanning tree T (thus T∪ei)
gives rise to a unique loop γi ⊂ T ∪ ei. These loops

{γ1, γ2, · · · , γ2g}
form the basis of the first homology group H1(M,Z).

Fig. 2: Homology Basis.

b) Cohomology Group: The differential forms are ap-
proximated by discrete forms. A discrete 0-form is a function
defined on vertices, f : V → R; a discrete 1-form is
a function defined on the oriented edges, ω : E → R,
ω([vi, vj ]) = −ω([vj , vi]); a discrete 2-form is defined on
the oriented faces τ : F → R. Discrete exterior differential
operator d is dual to the boundary operator ∂, for example

dω([vi, vj , vk]) = ω(∂[vi, vj , vk])
= ω([vi, vj ]) + ω([vj , vk]) + ω([vk, vi]).

Given the first homology group H1(M,Z) basis
{γ1, · · · , γ2g}, the dual cohomology group basis can be
obtained as follows. For each base loop γk, slice the mesh
M to get an open mesh Mk. The boundary of Mk has two
connected components, denoted them as

∂Mk = γ+
k ∪ γ−k .

Construct a function fk : Mk → R,

fk(vi) =

 1 vi ∈ γ+
k

0 vi ∈ γ−k
rand vi 6∈ ∂Mk

Then the 1-form dfk, dfk([vi, vj ]) = fk(vj)−fk(vi) is 0 on all
boundary edges. Therefore, one can define ωk on the original
closed mesh M . Suppose e is not on the loop γk, then it has a
unique corresponding edge ẽ on Mk, define ωk(e) = dfk(ẽ).
If e ⊂ γk, then let ωk(e) = 0. ωk is a closed 1-form, and not
exact. These non-exact closed 1-forms

{ω1, ω2, · · · , ω2g}
form the basis of H1(M,R). See Figure 2.

c) Harmonic Differential Group: According to Hodge
theory, each cohomological class has a unique harmonic 1-
form. Given a cohomology group basis {ω1, ω2, · · · , ω2g}, for
each closed 1-form ωk, there is a function hk : V → R, such
that ωk + dhk is harmonic. By definition, the 1-form is curl
free

d(ωk + dhk) = dωk + d2hk = 0.

The divergence is
∗d∗(ωk + dhk) = 0,

this induces the linear system, for each vertex vi ∈ V ,∑
[vi,vj ]∈E

wij (hk(vj)− hk(vi) + ωk([vi, vj ])) = 0,

where wij is the cotangent edge weight. Suppose edge [vi, vj ]
is shared by two faces [vi, vj , vk] and [vj , vi, vl], then

wij = cot θijk + cot θjil ,

where θijk is the corner angle at vertex vk in triangle [vi, vj , vk].
The coefficient matrix of the linear system is positive definite,
the solution exists and is unique. The 1-forms

{ω1 + dh1, ω2 + dh2, · · · , ω2g + dh2g}
form the basis of the harmonic 1-form group.

Fig. 3: Harmonic 1-form Basis.



d) Holomorphic Differential Group: Suppose the har-
monic 1-form group basis is given, still denoted as
{ω1, ω2, · · · , ω2g}. Let ω be a harmonic 1-form, its conjugate
1-form ∗ω is harmonic as well, therefore it can be represented
as linear combination of {ωk},

∗ω = λ1ω1 + λ2ω2 + · · ·+ λ2gω2g. (1)

The coefficients can be obtained by solving the following the
linear system∫

M

∗ω ∧ ωk =

2g∑
i=1

λi

∫
M

ωi ∧ ωk, k = 1, 2, · · · , 2g.

On one triangle [vi, vj , vk] embed on the plane R2, the
closed 1-form ωk can be represented as a constant 1-form
ωk = akdx+ bkdy, such that

ωk([vi, vj ]) =

∫
[vi,vj ]

akdx+ bkdy,

same equations hold for other edges [vj , vk] and [vk, vi]. The
wedge product on the face is given by

ωi∧ωj = (aidx+bidy)∧(ajdx+bjdy) =

∣∣∣∣ ai bi
aj bj

∣∣∣∣ dx∧dy.
Therefore∫

[vi,vj ,vk]

ωi ∧ ωj = (aibj − ajbi) Area([vi, vj , vk]).

and ∫
M

ωi ∧ ωj =
∑

[vi,vj ,vk]

∫
[vi,vj ,vk]

ωi ∧ ωj .

Locally, the Hodge operator is given by

∗ωk = ∗(akdx+ bkdy) = akdy − bkdx.
So the coefficients in the linear equation 1 can be easily com-
puted. By solving the linear system, the conjugate harmonic
1-form ∗ω is obtained.

The harmonic 1-form basis {ωk}, paired with its conjugate
harmonic 1-form {∗ω} form the holomorphic 1-form basis

{ω1 +
√
−1∗ω1, ω2 +

√
−1∗ω2, · · · , ω2g +

√
−1∗ω2g}

e) Branch Covering Map: Compute the cut graph G
of the mesh, slice the mesh along the cut group to obtain
a fundamental domain M/G. Choose one holomorphic 1-
form ω +

√
−1∗ω and integrate the holomorphic 1-form on

the fundamental domain to get the branch covering map.
Fix a vertex v0 ∈ M/G as the base vertex, for any vertex
vi ∈M/G,

ϕ(vi) =

∫ vi

v0

ω +
√
−1∗ω,

the integration path γ ⊂M/G can be chosen arbitrarily, which
consists a sequence of consecutive oriented edges, connecting
v0 to vi, denoted as

γ = e0 + e1 + · · · ek,

Fig. 4: Holomorphic 1-form Basis.

such that target vertex of ei equals to the source vertex of
ei+1, the source of e0 is v0, the target of ek is vi.∫

γ

ω =

k∑
i=0

ω(ei).

The branching points of ϕ are the zero points of the holomor-
phic 1-form. The slits are the horizontal trajectories connecting
the zeros of the holomorphic 1-form.

(a) front view (b) back view

(c) first zero point (d) second zero point

Fig. 5: Holomorphic 1-form and zero points.

As shown in Fig.7, there are 2g − 2 zero points of the
holomorphic 1-form. The horizontal trajectories through the
zeros segment the surface into handles as shown in Frame (a).
Each handle is conformally mapped onto a flat torus with a



(a) dense curve (b) zero point

Fig. 6: Dense curve on the surface.

slit, the end points of the slit are the zero points, as shown in
Frame (b). The flat tori are glued together through slits, the top
(bottom) edge of the slit on one torus is glued to the bottom
(top) edge of the slit on the other torus, as shown in Frame
(c). In the neighborhood of each zero point, the mapping is
a branch covering similar to z 7→ z2, as illustrated in Frame
(d).

a1b1

a2

b2


z1

z2

a2

b2



a2

a−1
2

b2b−1
2

z1

z2

z1z2

(a) surface (b) one handle

a1

a−1
1

b1b−1
1 z1z2

a2

a−1
2

b2

b−1
2

z1z2

z 7→ z2

(c) glue pattern (d) branch point

Fig. 7: Branch covering map.

B. Distributed Algorithm

The centralized algorithms described in the last section can
be implemented in the distributed setting as follows

f) Cut Graph: One node is set as the “seed node”. This
node then sends a message to its neighbors. The message
is propagated to the entire network by a single round of
flooding. The cut graph is the locus where the wave-front
meets, or the nodes which get the message from different
sources simultaneously. The details of detecting cut locus can
be found in [31].

g) Homology Basis: The algorithm boils down to com-
pute a spanning tree of the cut graph. This can be done by
breadth-first search by a single round of flooding. Let G be
the cut graph, T be the spanning tree, e an edge of G but not
on T . Then trace back two paths from the end nodes of e in
the tree to the root. When the two paths intersect, a loop is
obtained.

h) Cohomology Basis: Let γ be a homology basis, make
a copy for each node on γ and slice the network along γ. Call
the cutting curves that now become two boundary loops as γ+

and γ−. Construct a function f such that on each node on γ+,
f equals 1 and on each node on γ−, f equals 0. f is random

on other nodes. Then the gradient of f is a closed 1-form on
the original network, dual to γ.

i) Harmonic 1-form Basis: Given a closed 1-form ω, this
step is to find a function f , such that ω+df is harmonic. This
can be achieved by a distributed heat diffusion method. At the
beginning, f equals to 0 everywhere. Then for each node vi,
f(vi) is updated by

f(vi)←
wij∑
k wik

(f(vj) + ω([vi, vj ])) .

This diffusion process will converge to the unique harmonic
1-form cohomological to ω.

j) Hodge Star: Locally, a harmonic 1-form can be rep-
resented as a vector field, the Hodge star operator “rotates”
it about the normal vector of the surface by a right angle.
Formally, ∗dx = dy, ∗dy = −dx.

k) Branched Covering Map: Given a harmonic 1-form
ω, and its conjugate harmonic 1-form ∗ω, one can integrate
them by flooding. Choose one root node v0, set ϕ(v0) = (0, 0).
Suppose ϕ(vi) has been computed, vj is in its neighbors

ϕ(vj) = ϕ(vi) + (ω([vi, vj ]),
∗ω([vi, vj ])).

Then ϕ gives the branched covering map.

V. SIMULATIONS

In this section, we simulate the discrete path that traverses
and linearizes the sensor network densely distributed on a 2-
hole torus in 3D. The communication graph follows the unit
disk graph model. The network has a total of 56591 nodes with
average degree 5, as shown in Figure 8(a). We will compare
the path generated based on our algorithm with Eulerian cycle
and random walk.

A. Discrete path generation

Dense curve. We map the genus 2 surface network S′ to
the canonical, symmetric, torus S1 and S2 with slits, as shown
in Figure 8(b). Specifically, the nodes on torus S′1 are mapped
to S1, and the nodes on torus S′2 are mapped to S2. The zero
points on S′ form the slits. We take a straight line ` with
slope e. When ` hits the slit, it crosses to the other torus, e.g.,
from S1 to S2 or vice versa. Mapping ` back to the original
network S′, we get the dense curve `′ that spirals around the
surface. To find a discrete path on the sensor nodes, we expand
along the curve `′ to a belt B of width δ. The path starts from
an arbitrary node s inside B and always goes to its closet
neighbor within the belt. This way, we generate a discrete
path P visiting the sensor nodes by following the trajectory
of `′ in a greedy manner. The path is shown in Figure 8(a).

Eulerian cycle. We build a spanning tree of the network
and double all the edges to generate an Eulerian cycle. By
traversing along this cycle, we can get a discrete path through
the nodes.

Random walk. In the random walk scheme, the next hop
of the path is obtained by uniformly randomly choosing a
neighbor of the current visiting node.



B. Performance of different discrete paths

We compare the following two metrics and examine the
trend of the metrics when the path length (number of hops)
increases. (1) Coverage rate: the percentage of nodes already
visited. (2) Average shortest distance: For each node not yet
visited, we calculate the smallest number of hops it could be
reached from the current path. The average shortest distance
is the average of this value for all the unvisited nodes.

Figture 9 shows the network coverage rate as the path gets
longer. The coverage rates of our method and Eulerian cycle
are much better than random walk. Both our method and
Eulerian cycle could cover all the nodes when the path length
is roughly twice the network size. The coverage rate grow
much faster for our method compared to Eulerian cycle except
at the very end. Specifically, our method could cover 90% of
the nodes with the path length is at about around 1.25 times
the network size.

Figure 10 shows the average distance between visited nodes
and unvisited nodes. We can see that the average shortest
distances of both Eulerian circle and random walk are much
worse than our method. After covering around 5000 nodes,
the average distance to the unvisited nodes under our method
is about 3.5, while the distances are 16.6 and 22.4 by Eulerian
cycle and random walk respectively. Our method could reach
all the nodes in 2 hops on average when only a quarter of the
nodes are visited. We can learn from the results that the path
generated by our method could uniformly cover the network.

(a) Dense curve on sensor network (b) Two torus with slits.

Fig. 8: The sensor network and its related torus with slits. The
lines on (a) form the path of dense curve on the network. The
line number on (b) explains how to get the dense curve on the
two torus.

C. The coverage rate under multiple data mules

Our method can easily generate paths for multiple data
mules. By deliberately assigning slopes and starting positions
of the multiple dense curves, the data mules may cover the
network with little overlap between the paths. We can see from
Figture 9 that two dense curve paths could cover the network
even faster than the one curve case. This is not surprising
as we have one more path, however, what interesting is that
the two paths have little overlap. In fact, there are only 1865
nodes overlap out of the first 10000 covered nodes under each
path. In Figure 10, two dense curves show better performance
especially at the beginning than one dense curve under the

Fig. 9: Coverage rate under different path budget.

Fig. 10: Distance from uncovered nodes to covered nodes.

average shortest distance. For the first covered 1000 nodes, the
average shortest distance between visited nodes and unvisited
nodes under two dense curves is 6.5 while under one dense
curve is 20. The multiple paths generated by our method could
cover the network more uniformly and faster.

VI. CONCLUSION

We show in this paper a new construction for computing
a dense curve on a 3D sensor network when the sensors
are densely on a 2D manifold. The algorithm substantially
generalizes over the prior work by Ban et al. [21] while
keeping essentially the same nice properties. As future work
we would like to see how to generalize the idea to truly 3D
networks (volumetric 3D sensor networks).
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