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Abstract—In this paper we propose an algorithm to construct direct communication with a sensor in close proximity. Besi
a “space filling” curve for a sensor network with holes. Mathe  collecting sensor data, a data mule can also be helpful for
matically, for a given multi-hole domain R, we generate a path  gengor network maintenance such as battery recharge rbeaco
‘P that is provably aperiodic (i.e., any point is covered at mos based localization [3], [13], etc. A data mule moves along a
a constant number of times) and dense (i.e., any point ofR . v =l ) . g
is arbitrarily close to P). In a discrete setting as in a sensor Path. Planning the motion of a data mule requires a path that
network, the path visits the nodes with progressive densitywhich  visits the nodes in the network with minimum duplicate \&sit
can adapt to the budget of the path length. Given a higher When there are multiple data mules in the network, a flexible
budget, the path covers the network with higher density. Wi gat of naths that can be used by the data mules with minimum

a lower budget the path becomes proportional sparser. We sho S . - . .
how this density-adaptive space filling curve can be usefulof coordination and minimum interference (e.g duplicatetsisi

applications such as serial data fusion, motion planning fodata by different mules) will be handy.
mules, sensor node indexing, and double ruling type in-netark  Sensor node indexingAnother application of representing a
data storage and retrieval. We show by simulation results t8  gangor network by a linear order is for indexing sensor nodes
supetrior performance of using our algorithm vs standard spae or sensor data [14]. A number of indexing schemes for multi-
filling curves and random walks. . . . ; - 9 . .
dimensional input first take a space filling curve to ‘lineefi
. INTRODUCTION the input and then apply standard 1D indexing mechanisms.

We consider a sensor network that densely covers a planalh the following we first review previous work of linearizing
domain, possibly with multiple network holes. In this paper @ two dimensional continuous domain or a discrete two
develop algorithms to linearize the network, i.e., ‘comgtithe ~dimensional network, before we present our ideas.
sensor network by a single path. By enforcing a linear ordar Related Work
of the sensor nodes one can carry serial logical definitionds
serial operations on both the sensor nodes and the senaor?
We list a number of such applications in the following.

pace filling curves.In the continuous setting, various space
Eng curves have been defined for a square region [21].
The narrow definition of space filling curve, in mathematical
Serial data fusion.When a signal is spread over an area largehalysis, refers to a curve whose range contains the ehtire
than the coverage range of a single sensor, we will need to ésgensional unit square (or more generallysirdimensional
multiple sensors to collaboratively detect the distriliggnal. hypercube). Space filling curves were initially discovebsd
One type of data fusion mechanisms, caléedial fusion[5], Giuseppe Peano and are also called Peano curves. These
[29], combines sensor observations in a linear fashiontivele curves are often recursively constructed. See Figure 1rfor a
hypothesis. A state is maintained and passed on from senggtance of the Hilbert curve. The basic recursive strcisito

to sensor along a serial path, incorporating new observatio replace a line segment by a zig-zag pattern. In a recurséye st
each step. This is in contrast witfarallel fusionmechanism each segment is replaced by a scaled and rotated versiois of th
in which sensors independently process their data and pessgattern. The larger number of recursions used, the denser th
output to a centralized fusion center. There are pros and c@urve becomes. Mathematically every point of the unit squar
for serial fusion v.s. parallel fusion respectively. Onetigalar s on the curve, given an infinite number of recursions. For
advantage of serial fusion is that the fusion process can ®efiscrete set of points it suffices to take a sufficiently high
stopped as long as there is enough evidence to supporth@mber of recursions to generate a linear order of the points
reject the hypothesis, while in parallel fusion all datalwi¢  Space filling curves in this narrow definition only apply%e
sent to the fusion center nevertheless. The implementafiondimensional (orN-dimensional) unit squares (hyper-cubes).
the serial data fusion in a distributed network requires th payhen the domain is irregular and/or has holes the space
that visits all the nodes in a linear order [20]. filling curve will be chopped into many disconnected pieces.
Motion planning of data mules. Collecting data from sensor Very little work is known about extending the space filling
networks to a static data sink often suffers from communicgurves to other shapes. The only work known is a heuristic
tion bottleneck near the sink. One way to address this ise¢o w@gorithm [11] with a modified Hilbert curve for an ellipse.

a mobile sink, or called a data mule, implemented by a mobittamiltonian paths. In a discrete setting such as a graph,
device touring around the network to collect data through natural analog of a space filling curve is a Hamiltonian



0) (i)
Fig. 2: (i) A torus cut open along two curves b. (ii) The flattened
torus. The linel : y = kx is shown on the f!attened torus (the top
Fig. 1: The Hilbert curve (source: Wikipedia). and pottom edges are the dytthe left and right edges are the cut
a). Since the top edge and bottom edge are actually the same, th

; ; ; :«iline will go through the torus as shown by the parallel lineswill
cycle or a Hamiltonian path, i.e., a cycle or a path that sisif ot intersect itself and can be shown to be arbitrarily clsany

each vertex once and only once. Only a subset of graphs ﬁ@ﬁn on the torus.
a Hamiltonian path and determining whether a Hamiltonian

path or a Hamiltonian cycle exists in a given graph (whethgfe recursion. Hamiltonian paths and TSP will generate fixed
directed or undirected) is NP-complete, even in restrictgghgth paths. In sensor network applications such as serial
families such as planar graphs [7]. fusion and data mule planning, the length of a path may be
Traveling salesman tour.When a metric is defined betweerrestricted by travel budget or required fusion delay. If waats
any two nodes, the traveling salesman problem (TSP) asks Wath a high density curve, we spend a lot of time visiting n®de
the shortest tour that visits each node once and only once.innone region of the network before we ever get information
our setting the distance between two nodes can be either tfmn another region. Instead, we may want to adopt a visiting
graph distance or the Euclidean distance. The latter begonseheme such that we quickly tour around the network coarsely
the Euclidean TSP. Both the metric TSP and the special cags a rough idea of the sensor data and gradually refine the
of Euclidean TSP are NP-complete. For the metric TSP, thdensity when more travel budget is available or a highenydela
heuristic of using the Euler tour on the minimum spanninig allowed. Our construction is one of this type.

tree gives a two-approximation. With some additional tick

the Christofides algorithm [6] gives &/2 approximation. B. Our Contribution

For the Euclidean TSP, polynomial approximation schemes nis paper, we propose a scheme to generate a curve

(PTA_S) are known [2], [19] to find 6(_1 + ¢) approximate that (i) densely covers any geometric domain with possibly
solut|0r_1 for_ anye > 0. Such _algorlthms are mostly Ofholes; (i) have a coverage density proportional to its thng
theoretical interest. When multiple tours are allowed .(e.Gry nderstand the main idea, we first consider a torus. See
multiple data mules), the problem of minimizing the totail_-igure 2. We cut a torus open with two cutsh, and flatten
travel distance collectively done by all tours becomes the,q o square in the plane with the top edge identified as the
multiple traveling salesman problem (mTSP), which is al§g,,m edge and the left edge identified as the right edge.
NP-CQmpIete and _d(_)es not have any efficient approxmatlonwe will consider the universal covering space by packing
algopthms [4]. Existing solutions for mule planning aré alan infinite number of translated copies of the torus to cover
heuristic schemes [9], [12], [16], [25], [28]. the entire two dimensional plane, with the origin at the dwitt
Random walk. A practically appealing solution for visiting |eft corner of one such copy. Now take a straight lihevith
nodes in a network is by random walk. The downside is thats|opek being an irrational number. Mappmg back to the
we encounter the coupon collector problem. Initially a @md original torus, the line becomes a curve that spirals around
walk visits a new node with high probability. After a randomhe torus for infinitely long and never repeats itself. Figar
walk has visited a large fraction of nodes, it is highly lkel (i) shows a part of the curve on the torus. We could prove
that the next random node encountered has been ViSite(bbEfmat the curve has no self-intersections and the curve is@en
Thus it takes a long time to aimlessly walk in the network ance., any pointp of the torus is arbitrarily close to the curve.
hope to find the last few unvisited nodes. Theoretica"y for a With the basic construction for a torUS, we will generaiize
random walk to cover a grid-like network, the number of steggtg any planar domain with holes. Specifically, for a simple
is quadratic in the size of the network [18]. For a random walfomain with no holes, we will first map it one-to-one to a
of linear number of steps, there are a lot of duplicate vis#ts (jnjt square, and then flip the square along the top edge and
well as a Iarge number of nodes unvisited at all. In the Caﬁ% right edge to get four CopieS’ Creating atorus. Then vee fin
Of multlp|e random Wa|kS, Since there iS ||tt|e COOI’dinﬂtiOthe dense curve on the torus. Since any point in the Originai
between the random walks, they may visit the same nodgsmain is mapped to four copies on the torus, the curve we
and duplicate their efforts. find will visit any point for at most four times. The property

A major problem with all the above constructions is that thef being dense still holds. For a domain with holes, we will
curve found does not have adaptive density. A space fillifigst double cover it, i.e., creating two copies of the netyor
curve has a fixed density, determined by the threshold e upstairs copy and the downstairs copy. The two copies are




glued to each other along the hole boundaries to create & mult |- 1T L
torus, each hole being a handle. In the same way we choose
one handle to flatten the torus, and the rest of the handles
are mapped to very narrow ‘slits’. A line with irrational p®
in the covering space, when hitting a slit, bounces back. We il
could show that the curve will visit each point of the oridina \
domain at most twice and is provably dense. S
The mapping of a general two dimensional domain to
a multi-torus is handled by conformal map. Computing a
conformal map for deforming the shape of a sensor network v3 vy
has been done by using Ricci flow to change the netwo
curvature, in a number of prior work [10], [22], [23], [32].
We remark that the tools we use in this paper is different. . ; : :
Our current method is based on holomorphic differentials i, Dg i Dy
from Riemann surface theory [8]. Imagine an electric field . i i ;
on a surface, then the equipotential lines are orthogonal to *-=======""= s R e
the electric field lines everywhere, the pair of electricdiel i i i i
lines and the equipotential lines form the holomorphic dr¥fo , : : : :
All holomorphic 1-forms on a surface form a group, which is : IS S SO L
isomorphic to the first homology group of the surface. we & |, ' : : : :
select a special holomorphic 1-form, such that the intégmnat :
of the 1-form gives a special conformal map. Assume the : :
network is a planar domain with multiple holes, then the
conformal map transforms the domain to an annulus with (&) square mapping (b) universal covering space
concentric circular slits. Two boundaries are mapped to the Fig. 4: Conformal mapping for a topological torus.
inner and outer circles, the other boundaries are mapped to
the slits. This type of maps can not be carried out by Ricth deform any planar domain to be one of the canonical shapes
flow method, because Ricci flow requires the target curvatuse that we can apply the dense curve computation.
given a priori. But in th|s scenario, neither the positiorr N%\  Sense Curve For Annulus and Simply Connected Domains
the radii of circular slits are known at the beginning. On
the other hand, Ricci flow is a non-linear method in nature; Denote by S a planar domain. IfS has one hole, we
whereas holomorphic differential method is a linear oneictvh double cover it — creating two copies, one upstairs c6py
is computationally more efficient. and one downstairs copyS and glue the two copies along
The conformal map is computed for a given network fielth® corresponding boundaries to form a torus.
at the network initialization phase. The computation can be!f S is simply connected, we first map it to a square and
carried with only the network geometric domaihnega, if ~d€NOte by, v1,v2, vz the four corners on the outer boundary.
the sensors are densely deployed insfdle With the map And now take four copies of the domain, essentially f|rst nefle
computed the dense curve can be found and followed locaf{Pnd the top edgeyv; and then reflect the two copies along
by simply specifying an irrational slope. This leads to mally the right edgevyv,. This will mak_e it a torus. See Figure 3.
decentralized computations and planning in the network tHzor both cases, we need to design a dense curve on a torus.

can benefit data storage and data mule collection. A torus T? can be conformally and periodically mapped

. . - onto the plane, namely, the torus can be treated as
In the following we first present the theory of finding a

dense curve in a continuous domain. The algorithmic details T? = R?*T,
follow. \_N_e present simulation results and comparisons W'Wherer is the lattice formed by
space filling curves and random walks at the last.

El(g. 3: Reflect twice to create a torus with four copies of a square.
LTI v H : : H

.......................................................

I' := {me1 + nez|m,n € Z},

Il. THEORETICAL FOUNDATION . . . )
e; ande, are linearly independent translations. By an affine

In this section, we will present the theoretical foundationtransformation as shown in Figure 4, we can deform the &attic
including rigorous proof and computational methodolody, do be the regular integer lattice, namedy, = (1,0) andes =
our dense curve computation. We show how to find a den&e 1).
curve for a continuous planar domain with a canonical shapeWe define a dense curve on a 2D don@has an infinitely
under different topologies, including topological quéaterals long straight line in its universal covering spaf&, with
(i.e., simple domain without hole), topological annulug.(i irrational slope. It is continuous and non self-intersagti
with one hole), and topological annuli (i.e., with multipleand uniformly distributed, as demonstrated by the follavin
holes). In the next section we will show the detailed aldnonit theorem.



Theorem 2.1 (Weyl's Equidistribution Theorem [26], [30]). The proofs of the above claims are omitted from this abstract
Letx be airrational numbefnx) represents the fractional partdue to space constraints.
ofnz. Then

o (nz) is dense in0, 1].

« (nz) is equi-distributed inf0, v], namely for large integer — — VV —
N!
. #{n < N|{nz) € (¢,c+¢)} b
lim =e.
The following result is a well known corollary of the equidis 09

tribution theorem.

Theorem 2.2 (Dense Curve On a Torus).SupposeT? = Fig. 6:Tiling of I by copies ofD) and the curveys

R2/T", where ' is the canonical integer lattic& =

{(m,n)|m,n € Z}. Let~ be a straight line with irrational slope C. Comparison With Space Filling Curves

onR?, « : R? — T2 is the projection, them(v) is dense and A space filling curve will be ‘filling up’ the square, i.e.,
equi-distributed ofi”2. every point of the square is on the curve. A space-filling eurv
must be everywhere self-intersecting in the technicalesémet
the curve is not injective Intuitively, a non self-intersecting

A relatively similar idea can be applied for multiply con-c,rye can never fill up the square as the two have different
nected domains. As shown in Figure 5, the input netWOEBpologies.

in (a) is a planar domain with. + 1 boundary components | oy case, we generate a continuous curve which is non
70,71, -, 7n}, wherey, is the exterior boundary compo-selt_intersecting on a torus. It does ngo throughall the
nent. The domain is then conformally mapped to an annulysints put it isarbitrarily close to all points — any poing

with concentric slits in (b), such thab is mapped to the outer js yithin distance= of the curve, fore > 0 to be arbitrarily
circle, 1 is mapped to the inner circley,, 1 <k < n, aré  gma)| For a simple domain, since we use four copies to create
mapped to concentric circular arcs. The shortest path§s) r 5 orus, our dense curve will visit each point of the original
T,k > 110 7o are denoted as. By taking the complex gomain at most four times. For a domain with holes, we use
logarithm, the annulus irib) is mapped to a rectangle withyyg copies to create a torus or a multi-torus. Thus a dense
horizontal slits, as shown ifr). Note that, the annulus is cutc e in our construction will visit each point of the origin
along,, therefore the left and right vertical boundaries of th§omain at most twice. This ensures that the dense curve in the

rectangle are both;. Denote by the rectangular domain ag,jjications will eventually visit the entire network andes

D . ) ) not visit any particular node too often.
The heights, starting:-coordinates and the lengths of the

slits (denoted a$h;, s;, ;) respectively) are conformal invari- I1l. THEORY ONMULTI-HOLE DOMAIN
ants of the sensor network domain. In other words these arerhe dense curve we construct for applications in a sensor
the “fingeprints” of the domain [1]. There can only be twWahetwork domain with holes is simply a “billiard” path in

B. Dense Curve For Multiply Connected Domain

cases here: the transformed slit domairD (Figure 1). The proof for
1) All of h;,s; andl; are rational. the rectangular domain is identical to the case in which the
2) At least one of thé,;, s; and/; are irrational. domainD is a square; which we will assume in this appendix.

The curve we construct is a simple “billiards” path (stagtin Billiards in polygons is a rich and well researched field with
from the lower left corner of the rectangle) in the rectaagul many interesting open problems (for an excellent survey, se
domainD’. We take a curve by starting from the bottom left?]). Most of the techniques involve the theory of Riemann
corner of D’ with an irrational slope. When the path hits &Surfaces, especially Teichmiller theory. In this sectioe
slit, top or bottom boundary of, it is bounced back. The explain the construction of our curve and use these theories
two vertical sides of the rectangle are identified and theeurto derive properties of the curve.
continues at the point from the same height on the left vadrtic
side when it exited the right vertical side from. See Figure ) )
for details. 1) Notation: Let I denote the unit squafe, 1] x [0, 1]. Let

Using techniques from complex dynamics, we can shoff denote the infinite strift x [0, 1]. Let.S;, 1 <4 < n denote
that: the horizontal slits;S; C I Vi. Each slitS; is defined by a
Stéiple (hi, si,1;) whereh, is the y-coordinates; is the starting
x-coordinate, and; is the length {; < 1 —x;) of the slit. With
the above notation)) = IUS; U...US,,. We consider a tiling
Pé H by copies of D as shown in Figure 2. Similarly, call

. Preliminaries

1) In case 1, a billiards path with irrational slope is den
and ergodic.

2) Incase 2, the set of initial directions (frof, 7)) which
ensure density of the resulting billiards path is measu
1. This means that if we pick a direction randomly, the 1An injective function is a function that preserves distivedts: it never
resulting curve will be dense with probability 1. maps distinct elements of its domain to the same element.
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Fig. 5: Multiply connected domain.

Fig. 7: The Slit Map domairD

Sa

Sy

S

H the domain we get by taking copies of a reflection/of

(denotedf)) along the x-axis.

2) Curve Definition: We construct a curveyy , in the
following way. Shoot a ray fromx € D which makes an

Fig. 8: Tiling of H by copies ofD and the curveyy

B. Quadratic Differentials and trajectories

Quadratic differentials play an important role in the theor
of Moduli of Riemann Surfaces. We refer the readerZofpr
a better explanation of these objects. Here we will only @efin
them and state their main properties.

Holomorphic Quadratic Differential : A holomorphic
guadratic differential on a Riemann Surfa&és an assignment

of a functiong;(z;) on each chart; such that ifz; is another
2
local coordinate, thew; (z;) = @(@)(3—2) :
It is well known ( [?], [?]) that every quadratic differential

on R provides “flat” coordinates; coordinates in which the
metric of the underlying surface is flat (euclidean) evergreh
except at finitely many points (corresponding to zeroes ef th

angle¢ with the positive x-axis. The ray then gets reflected gfitferential), which are also called cone singularities.

the following boundaries :

1) ThelineL; =R x {1}
2) ThelineLy =R x {0} (the x-axis)

3) Any copy of the slitC; ., which by definition is a slit

of type (h;, s; + t,1;), wheret € Z.

Let 7 : H — I be the natural projection map. L&}y , =
7(v0.2).FOr such a curve with initial directiof , one can
also define a flowFy : H — H which intuitively takes a
point z € H to the corresponding point ofy . after one
unit of time (assuming unit speed parameterizationy®f).
Such a flow is callecergodic if the only invariant sets are
(Lebesgue) measure 0 or 1. L@tdenote the origin. We are
mainly interested in properties of o (which is the curve we
use for our purposes) and ergodicity Bf. For the sake of

brevity, we setl’y :=T'y o and~y := 9,0

This metric is locally given by¢(z)|2 |dz|. On the comple-
ment of these singularities, the coordinate charts (z, y) are
such that the change of coordinates on the intersection @f tw
charts are of the formm — z 4 ¢ or z — —z + ¢. In other
words, the transition functions are translations and reéfies
in the origin composed with translations. Also, any such flat
structure corresponds to a unique quadratic differential.

Furthermore, every quadratic differential naturally de§in
a pair of trajectories. Ahorizontal trajectoryis a curve for
which ¢(z)dz? > 0 and avertical trajectoryis a curve for
which ¢(z)dz% < 0

1) Saddle ConnectionsFor a more detailed account of
saddle connections, seeq])

Let P be the set of the endpoints of all the slits (including
copies of the original slits). Hence

P={xe H:x=(s;+ali+t,h;);1 <i<n;a€{0,1};t € Z}



~ Letz,y € R” and L(z,y) denote the (closed) line segmentsig, 9: Decomposingy, into two curves; one i and one
joining pointx to pointy. in I

Saddle Connections: The set of Saddle connectiofsis the H

set of all possible line segments between endpoints of two

distinct slits in H. Formally, — — LL —
D
S={L(z,y):x,y € P;x #y} — ?
Note that in our case, this set is countable. / — Ky /S — —
With this, we have all the building blocks for stating our O
theorems.

C. Main theorems

O
In the following, Q@ denotes the field of rational numbers. L i Lf} 2 - -

Lemma 1. Let h;,s;,l; € Q. Further, letd be such that
tan(#) is irrational. Thenf¢ € S such that! C ,.
Proof: By hypothesis(s;+t+al;,h;) € QxQforallt € Z
and alla € {0,1}. Since all the endpoints of the slits are at
rational coordinates, it is clear that all saddle connectioave
rational slopesz, has lines of only two slopesan(6) and
—tan(0), both of which are irrational. Thereforgy cannot 1) In the rational case, we can find exactly the direction
contain any segment frorf. we need to obtain a dense curve.
Theorem 1: Let hy, s:,1; € Q and @ be such thatan(6) is 2) In the irrational case, picking any direction uniformly a
irrational. Then random, with probability 1 we get a dense curve.

1) Ty is dense inD. 3) Ergodicity hgre implies 'Fhat thel curve we getuni-

2) The flow F is ergodic. formly densen the d(_JmalnD. This means that_ on the_

3) Letz € D; thenT'y passes through at most twice. average, our curve W'I.I 90 through any two distinct equi-

radii disks (contained i) with almost same frequency.

Proof: The curvey, has lines of two slopestan(¢) and However, this does not imply uniform density in the

—tan(f). The curve on the copy i/ contains only the original domain, since the conformal map we use in the
line segments of slopean(f) and once any such segment is next section does not preserve areas.

reflected, it continues it/ appropriately, as a line with slope

Remarks:

againtan(#) (Figure 3). IV. ALGORITHMS FORDISCRETE CONFORMAL MAPPING
Consider the genus + 1 surface obtained by identifying a , ) )
boundary ofD to its corresponding reflected boundaryin In this section we go through the computational tools to

In this way, we obtain a “flat surface”, which has a euclideaf€form an input domain to our canonical shape of a torus or
(flat) metric everywhere except at finitely many cone singula @ Multi-torus on which we define a dense curve. Our method
ties which occur at the end points of the glued boundaries. Ti§ Pased on conformal geometry. The following theorem lays
charts are naturally defined from (the embedding/fiet o down the theoretic foundation for our method:

be the quadratic differential associated with this flat@tee. Theorem 4.1 (Ahlfors [1] - Slit Conformal Map).

With the above construction, we now get a continuous cung ppose) is a planar domain with multiple boundary
V' on the flat su‘r‘face. § o y componentsd? = {yo,71, - ,7n}, then there exists a
Consider the “rotated” quadratic dlﬁerent}anS. One can conformal maps : Q — D, whereD is a unit planar annulus
see thatV is a vertical trajectolry o_f this differential. Now, \vith concentric circular slits, such that~o) and ¢(+,) are
we use a theorem from [?] which informally says that on g,q outer and inner circles of the annuluéy,)'s, k > 1, are

flat surfacer, a trajectory of any quadratic differential which.,ncentric circular slits. Such kind of conformal mappinés
does not contain any saddle connection is dense. Furthermg,rm-que up to a rotation.

ergodicity of such directions was proved ifi].[ Along with

Lemma 1, these prove (i) and (ii). To prove (iii), assume the The discrete algorithms for computing conformal mappings
contrary. If there is a point which Ty passed through at leastfor arbitrary 2D domain are explained in details below. The
three times, then one of the directiofisor (m — #) must be pipeline is as follows: 1) Compute cohomology basis; 2)
repeated, which would mean thg is periodic; contradicting Compute harmonic 1-form basis; 3) Compute holomorphic 1-
(i). In fact, using the above construction and [?], [?], oaa ¢ form basis; and 4) Compute the slit map.

also prove that Discrete exterior calculus.Similar to all prior work [10], [22],
Theorem2: Let h;,s;,l; € R. Then the set of direction® [23], [32], the network is represented as a discrete tritargu
for which I'y is dense and ergodic is (Lebesgue) measure 1rmeshM = (V, E, F'), with the vertex sel/, the edge setl

the set(0, 27). and the face sef'. An oriented edge is denoted gs, v;], an



oriented faces i$v;, v;, vx]. The boundary operator takes the
boundary of a simplex:

8[vi,vj] :’Uj — Uy,
Olvi,vj,vk] = [vi, 5] + [V, vr] + vk, ve].

A O-form is a function defined on the vertex set V- — R. A
1-formis a linear function defined on the edgewetF — R.
A 2-form is a linear function defined on the face setE —
R. The discrete exterior differential operator is defined as

dw(o) := w(do).

If wis a closed form, theadw = 0.

Let [v;,v;] is an interior edge, with two adjacent faces
[vi,v;,vk] and [vj,v;,v]. Then the edge weight is defined
as

l

wj; = cot ij + cot 0},

Fig. 11: Holomorphic 1-forms basi§ri, 72, 73}

where Hfj is the corner angle at vertex;, in the face

[vi, v;, vg]. If [v;,v;] is & boundary edge, adjacenttg, v;, vy Similarly, we compute: harmonic functionsfy, : V — R,

with Dirichlet boundary condition, such that

only, then
w;; 1= cot 9;“] Afi(vy)) = 0 Wy
. . . . . i =1 i €
The discrete co-differential operator is defined as folloket ?}:EZ% -0 Z c g]}\/[ —
w be a one-form, theAw is a 0-form, ! !
Then letw,+x := df, then{w,1}, k=1,2,---  n are exact
dw(vi) = Z wijw([vi, vj])- harmonic 1-forms.
. [m’?j]eE . Step 3: Holomorphic 1-form basis. For each harmonic 1-
If f:V — Ris a harmonic function, then form w;, we compute its conjugate harmonic 1-fotmy,.
Af(vi) = ddf (vi) = Y wij(f(v;) = f(v:)) =0,Yv; € V. oo
[vi,v5] wi =Y Nijw;
j=1

Step 1: Compute cohomology basisSuppose the boundary
components of the mesh avd/ = o —~v1 —72 - - - Yn, Where
7o is the exterior boundary. Compute the shortest path fypm

The unknowng\;;} can be computed by solving the follow-
ing linear equation system:

to 79, denoted ag; as shown in figure 10. Slice the mesh 2n
alongn; to get a mesh\/y, the pathn, on M corresponds to / wi A fw; = Z )\jk/ wi A\ W
two boundary segmentg’ andn, on M. Define a function M k=1 M
Je s My — R, The wedge products can be computed as follows. Let
+1 v €t [vi,v;,vx] be a triangle_ facee; = [vj,z{k], ej = vk, v;] and
frvi) =4 -1 vi €y er = [v;,v;]. Then by direct computation, we get
0 wgnlUny 1| wile) wi(ej) wiler)
Assumee € 1" Uny, thendfx(e) = 0. Therefore, the exact W Awz = 3 wo(ei) walej) walex)
1-form df, on Mj, in fact is a closed 1-form on the original fos,vg o] 1 1 1
meshM. Let py := dfi, on M, then and
{p1,p2, -+, pn} Jivs 0500 w1 A w2 = 5 [wi(er)wa(e;) cot 0% +

form a basis for the cohomology group! (M, R). wi(ej)wa(es) cot by + wi(er)wa(ex) cot 0]

Step 2: Compute harmonic 1-form basis.Given a closed Letr; := w+*wipv/—1, Then{r, s, -, 7, } form the basis
1-form pg, we can find a functiom,, : M — R, such that for the holomorphic 1-form group. Figure 11 shows the basis
for holomorphic 1-forms.
0 +d Vi) = Wi Vi, Uj + Vj)—9g\V; :Oa . . .
(prt-dgi) (vi) [Z] itow(oi vl g lvs) =g (va))} Step 4: Slit conformal mapping.We then search for a special
Vi, Vj

) ) ) holomorphic 1-formr = ", x;7, such that
for all vertexwv; in M. Thenwy, := pi + dgi. is @ harmonic 1-

form. Then{w;,ws, - ,w,} form the basis for the harmonic Img(/ ) = Zxkjmg(/ ) = 2.
1-form basis. ~o B o



we glue two copies of the network along the boundary

segments betweemn, v; and the boundary segments between

v2,v3. The result is a topological annulus. The algorithm above
can also handle this case and will map the doubled network
to an annulus. By taking the complex logarithm, the original

network is mapped to a planar rectangle, such that the four
corners are mapped to the corners of the rectangle.

Doubly connected domain.If the input network is a doubly
connected domain, the conformal mapping gives a canonical
annulus. By taking the complex logarithm, it is flattened to
a periodic rectangle. Glue one copy along one boundary, the
result domain is a topological torus.

(a) a 3-hole domain

V. SIMULATIONS
A. Dense Curve Discretization

The aperiodic dense curve is identified as a continuous line
in the universal covering space. To apply it in sensor ndtgjor
Fig. 12: Conformal mapping from the domain to the annulys,is the curve needs to be mapped to a discrete path. There are
mapped to the outer circle, is mapped to the inner circle. various strategies for curve discretization. In our sgttine
suppose there is a sensor netw6tkleployed on a continuous
sensor domaiR. We compute the dense curve @ and

/ L Zxklmg(/ n) = 0,i =23 n. expand the width of the curve to get a belt regiBn The
Vi k i

[

e

(c) horizontal slit mapping " (d) cyli er apping

and

discrete path starts at an arbitrary node 5. For a nodeu
o o on the path, we compute its next hop from the set of neighbors
This implies [ 7 = —27. Then the mapping is given by falling inside the belt3: C(u) = {ulu € N(u) andu € R}

z based on a closeness measurement. This will generate a
P(2) = eXp{/ T} discrete path.
20
where the integration path is arbitrarily chosen. B. Comparison with Various Network Covering Approaches

Now we summarize the computation and communicati(%HV:/e comptare (I?ur metthd_W'th faﬂ?umber of otger appro_?_ches
steps involved in the pipeline. at generate a linear ordering of the sensor nodes, sgalsific

. . the space filling curves, Eulerian cycles and random walis. F
1) Step 1. Compute cohomology baS|s_. In t_h|s step we W'&P ace filling curve, we use the Moore curve which covers a
find shortest paths _connectmg the '”te“of holes to ﬂ% uare densely. See Figure 13 for an example. Starting from a
oute_r boundary. This can be don_e by a single ﬂOOd'_ rner, a space filling curve first visits nodes nearby exihifpi
sf[artmg from the nodes at the inner hole bounda”%?rong locality. It also does not handle network holes and
simultaneously. . . . may be disconnected into multiple pieces. An Eulerian cycle
2) Step 2: Compute .ha”“orT'C 1-form b§13|s. In this step V%ﬁves a cycle on the network nodes in which one node may
computen_ harmonic fur_1c_:t|ons, whereis the “‘%'T”ber of appear multiple times. We build a minimum spanning tree of
.hOIES.‘ This Uses the D'”Chlet bognqiary condltl_on _andq e network, duplicate all the edges to generate an Eulerian
|terat!ve gossm-;tyle algorithm, similar o the distied cycle. Compared to the aperiodic dense curve, Euleriarecycl
algorithm used in [15]. . . .. also has spatial locality. For random walk, the next hop ef th
3) Step 3: Compute holomorph_lc 1-form basis. Th's Nath is chosen uniformly randomly from the neighbors of the
vol_ves completely local operations. Each node will sol €urrent node.
a linear system only on its neighbors. Since Moore curve only exists on a square, in our compari-

4) Step 4: Siit conformal m_apping. This involves only ON&on the networks are deployed on square regions withous hole
round of flooding, starting from the outer boundar h

: 4 Th q te their virtual dinat ¥he sensor nodes are uniformly randomly deployed within
inward. The nodes compute their virtual CooraiNates. o natyork region, the transmission pattern follows thé& un

The algorithm solves sparse linear systems. Therefore #gk graph model(UDG). In the experiment the networks have
the non-linear curvature flow methods. The algorithm hemdlgormy generated0 networks to average out the randomness.
domains with two or more holes. For other cases the algorithm,:igure 14 shows the network coverage percentage as the
is similar. paths move forward. The axis is the length of the path in
Simply connected domain.If the input network is a simply the number of hops, thgcoordinate is the percentage of nodes
connected domain, we select four corner vertices on thevered by the path. It is obvious that aperiodic dense syrve
boundary {vo, v1,v2,v3} sorted counter-clock-wisely. ThenEulerian cycles and Moore curves are much better than random
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Fig. 13: The Moore curve (source: Wikipedia).
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walk in terms of coverage, which is not surprising because Fig. 14:Comparison on Network Coverage

these are well-guided curves, while a random walk is aimless

Since Moore curve is designed to cover the unit square ci Avg Distance from Unvisited Nodes to Visited Nodes
the coverage grows linearly at a fast pace. However, ‘ ‘ ‘ ‘ ‘ — Dense Curve
problem for Moore curve to be used in practice is that: @ 700} |
needs to choose a resolution before the curve starts. If ©_ Random Walk ||
resolution is not appropriately selected, Moore curve

miss some nodes when it comes back to the starting pc
Any continuation will not discover new nodes, as shown
the later part of the curve in Figure 14. The Eulerian cyt
can eventually cover all nodes by definition. Compared to
the other methods, our approach has a clear advantage &
beginning of the path. Our dense curve sets out to expl
the entire domain in a coarse manner; network coverag: 0 ‘ ‘ ‘ ‘ ‘ —

) . . 0 100 200 300 400 500 600 700 800
improved continuously when the path is longer. Number of Visited Nodes

Figure 15 shows the average shortest distance from the set ) , »
of unvisited nodes to the set of visited nodes, this averaELg' 15: Comparison on Average Shortest Distance from Unvisited

. o N odes to Visited Nodes
shortest distance criteria measures the locality propefty
the paths. If the path visits most of nearby nodes befo
moving to nodes faraway, the average shortest distancdittan
remain relatively high even though the path visits more s0de
Compared to other methods, the average shortest distance
the aperiodic dense curve drops sharply, which means that
aperiodic dense curve visits the network in a more global w:
than other methods.

To conclude, the aperiodic dense curve, Moore curve a
Eulerian cycle cover the network much faster than rando
walk. Compared to the Moore curve and Eulerian cycle, tt
aperiodic dgnse curve is able to quickl_y sample the wholle Fig. 16: Conformal mapping for a network with holes.
network, which gives a good representation of the network in
the early stage.

Average Shortest Distance

VI. DENSE CURVE APPLICATIONS

C. Covering Network with Holes Multiple paths and data mule coordination. To gather net-

Sensor networks may have obstacles inside, which leadwork data, one could use multiple data mules simultaneously
holes in the sensor domain. Normal space filling curves like speed up the process. To coordinate and collaborate with
Moore curve would fail under such cases, because thosesurgach other, the data mules may need to communicate during
only cover the unit square, and would become disconnectibé@ data collection, which can be expensive or even inféasib
pieces. By performing conformal mapping to map the holéy using aperiodic dense curve we can reduce such coordi-
to slits, the aperiodic dense curve can be used to cover thaion efforts. Each aperiodic dense curve would be able to
whole sensor domain. Figure 16 shows a 2-hole network witlover the whole network in a particular pattern, and theinigi
its conformal mapping to circular slits and cylinder. Figur7 pattern is predefined by the slope and starting position. By
shows the aperiodic dense curve on the network. deliberately assigning slopes and starting positions tthijhel



Fig. 17: A dense curve on the network in Fig. 16.

VIl. CONCLUSION

In this paper we propose the computation of a dense
curve for any planar domain. When walking on the curve
the trajectory will gradually and densely cover the domain
of interest. This linearization of a 2D network can be useful
for any scenarios that require a logical serial order. Weehop
to develop applications of this idea for data mule plannimg i
our future work.
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aperiodic dense curves, the data mules can collectivelgrcovyi)
the whole network such that the overlap between differeri#l
paths is small. Figure 18(ii) shows two dense curves startin

from different boundary node®,, O, with different slopes.

(31

Double ruling. Besides the applications for data mule plan-

ning and data fusion, we can also make use of the den&

curve for in-network storage and retrieval. One scheme fag;
storing sensor data in the network, called double rulings,
stores the sensor data along a storage curve and retrietzes da
along a retrieval curve. Data is retrieved when the retfieva{ﬁ]
curve intersects the storage curve. Previous double miling

schemes are only designed for networks of a regular shape

(71

e.g., the horizontal/vertical lines [17], [27], [31], orqmer

circles (great circles through a stereographic mappind).[2 [8]

When the network has holes, these curve are fragmented by

the presence of holes. Alternative repairing schemes naist 'R)]

used to reconnect them.

A pair of non-parallel aperiodic dense curves give twh !

trajectories on the network that intersect with each offieose

(11]

two trajectories form a lattice on the network, which is very

suitable for double ruling. In particular, for storage cesy
we simply use the lin¢ : y = kx with slope k. For the
retrieval curves, we use the lin€ : y = z/k, i.e., the line

[12]

perpendicular td in the universal covering space. Figure 18(i)

shows the double ruling result from two consumersB to
get the data from the producer trajectory.

‘

(i) double ruling.

(i) multiple paths.

Fig. 18: Dense curve applications.
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